A HEAT TRANSFER
TEXTBOOK oo

John H! Lienhard/IV//John H. Lienhard V.







A HEAT TRANSFER TEXTBOOK






A HEAT TRANSFER TEXTBOOK

THIRD EDITION

by
JOHN H. LIENHARD IV
and

JOHN H. LIENHARD V

PHLOGISTON
CAMBRIDGE
PRESS MASSACHUSETTS



Professor John H. Lienhard IV
Department of Mechanical Engineering
University of Houston

4800 Calhoun Road

Houston TX 77204-4792 U.S.A.

Professor John H. Lienhard V
Department of Mechanical Engineering
Massachusetts Institute of Technology
77 Massachusetts Avenue

Cambridge MA 02139-4307 U.S.A.

Copyright ©2002 by John H. Lienhard IV and John H. Lienhard V
All rights reserved

Please note that this material is copyrighted under U.S. Copyright Law. The
authors grant you the right to download and print it for your personal use or
for non-profit instructional use. Any other use, including copying,
distributing or modifying the work for commercial purposes, is subject to the
restrictions of U.S. Copyright Law. International copyright is subject to the
Berne International Copyright Convention.

The authors have used their best efforts to ensure the accuracy of the
methods, equations, and data described in this book, but they do not
guarantee them for any particular purpose. The authors and publisher offer
no warranties or representations, nor do they accept any liabilities with
respect to the use of this information. Please report any errata to the authors.

Lienhard, John H., 1930-

A heat transfer textbook / John H. Lienhard IV and
John H. Lienhard V — 3rd ed. — Cambridge, MA :
Phlogiston Press, c2002

Includes bibliographic references and index.

1. Heat—Transmission 2. Mass Transfer

I. Lienhard, John H., V, 1961- II. Title
TJ260.1.445 2002

Published by Phlogiston Press

Cambridge, Massachusetts, U.S.A.

This book was typeset in Lucida Bright and Lucida New Math fonts (designed

by Bigelow & Holmes) using KTgX under the Y&Y TgX System.

For updates and information, visit:
http://web.mit.edu/lienhard/www/ahtt.html

This copy is:
Version 1.11 dated August 6, 2002



Preface

This book is meant for students in their introductory heat transfer course
— students who have learned calculus (through ordinary differential equa-
tions) and basic thermodynamics. We include the needed background in
fluid mechanics, although students will be better off if they have had
an introductory course in fluids. An integrated introductory course in
thermofluid engineering should also be a sufficient background for the
material here.

Our major objectives in rewriting the 1987 edition have been to bring
the material up to date and make it as clear as possible. We have substan-
tially revised the coverage of thermal radiation, unsteady conduction,
and mass transfer. We have replaced most of the old physical property
data with the latest reference data. New correlations have been intro-
duced for forced and natural convection and for convective boiling. The
treatment of thermal resistance has been reorganized. Dozens of new
problems have been added. And we have revised the treatment of turbu-
lent heat transfer to include the use of the law of the wall. In a number of
places we have rearranged material to make it flow better, and we have
made many hundreds of small changes and corrections so that the text
will be more comfortable and reliable. Lastly, we have eliminated Roger
Eichhorn’s fine chapter on numerical analysis, since that topic is now
most often covered in specialized courses on computation.

This book reflects certain viewpoints that instructors and students
alike should understand. The first is that ideas once learned should not
be forgotten. We have thus taken care to use material from the earlier
parts of the book in the parts that follow them. Two exceptions to this
are Chapter 10 on thermal radiation, which may safely be taught at any
point following Chapter 2, and Chapter 11 on mass transfer, which draws
only on material through Chapter 8.
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We believe that students must develop confidence in their own ability
to invent means for solving problems. The examples in the text therefore
do not provide complete patterns for solving the end-of-chapter prob-
lems. Students who study and absorb the text should have no unusual
trouble in working the problems. The problems vary in the demand that
they lay on the student, and we hope that each instructor will select those
that best challenge their own students.

The first three chapters form a minicourse in heat transfer, which is
applied in all subsequent chapters. Students who have had a previous
integrated course thermofluids may be familiar with this material, but
to most students it will be new. This minicourse includes the study of
heat exchangers, which can be understood with only the concept of the
overall heat transfer coefficient and the first law of thermodynamics.

We have consistently found that students new to the subject are greatly
encouraged when they encounter a solid application of the material, such
as heat exchangers, early in the course. The details of heat exchanger de-
sign obviously require an understanding of more advanced concepts —
fins, entry lengths, and so forth. Such issues are best introduced after
the fundamental purposes of heat exchangers are understood, and we
develop their application to heat exchangers in later chapters.

This book contains more material than most teachers can cover in
three semester-hours or four quarter-hours of instruction. Typical one-
semester coverage might include Chapters 1 through 8 (perhaps skipping
some of the more specialized material in Chapters 5, 7, and 8), a bit of
Chapter 9, and the first four sections of Chapter 10.

We are grateful to the Dell Computer Corporation’s STAR Program,
the Keck Foundation, and the M.D. Anderson Foundation for their partial
support of this project.

JHL 1V, Houston, Texas
JHL V, Cambridge, Massachusetts
August 2002
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PART I

THE GENERAL PROBLEM OF HEAT
EXCHANGE







1. Introduction

The radiation of the sun in which the planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change
direction in every way, and, penetrating the mass of the globe, would raise
its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, ). Fourier

1.1 Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. In the eighteenth and early nineteenth
centuries, scientists imagined that all bodies contained an invisible fluid
which they called caloric. Caloric was assigned a variety of properties,
some of which proved to be inconsistent with nature (e.g., it had weight
and it could not be created nor destroyed). Butits most important feature
was that it flowed from hot bodies into cold ones. It was a very useful
way to think about heat. Later we shall explain the flow of heat in terms
more satisfactory to the modern ear; however, it will seldom be wrong to
imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
region. It would be “dead” in the fullest sense of the word — devoid of
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any process of any kind.

The overall driving force for these heat flow processes is the cooling
(or leveling) of the thermal gradients within our universe. The heat flows
that result from the cooling of the sun are the primary processes that we
experience naturally. The conductive cooling of Earth’s center and the ra-
diative cooling of the other stars are processes of secondary importance
in our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while “natural man” is in balance
with these heat flows, “technological man”! has used his mind, his back,
and his will to harness and control energy flows that are far more intense
than those we experience naturally. To emphasize this point we suggest
that the reader make an experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your own
weight up a stairwell, against a stopwatch. Express the result in watts (W).
Perhaps you might collect the results in your class. They should generally
be less than 1 kKW or even 1 horsepower (746 W). How much less might
be surprising.

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The energy consumed
by an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The energy consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the power output
of even a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the
thirteenth century, the energy we use was drawn indirectly from the sun

1Some anthropologists think that the term Homo technologicus (technological man)
serves to define human beings, as apart from animals, better than the older term Homo
sapiens (man, the wise). We may not be as much wiser than the animals as we think we
are, but only we do serious sustained tool making.
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using comparatively gentle processes — animal power, wind and water
power, and the combustion of wood. Then population growth and defor-
estation drove the English to using coal. By the end of the seventeenth
century, England had almost completely converted to coal in place of
wood. At the turn of the eighteenth century, the first commercial steam
engines were developed, and that set the stage for enormously increased
consumption of coal. Europe and America followed England in these
developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win
arace, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human pro-
portions. We must understand and control the processes that divide and
diffuse intense heat flows down to the level on which we can interact with
them. To see how this works, consider a specific situation. Suppose we
live in a town where coal is processed into fuel-gas and coke. Such power
supplies used to be common, and they may return if natural gas supplies
ever dwindle. Let us list a few of the process heat transfer problems that
must be solved before we can drink a glass of iced tea.

e Avariety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

e The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

e The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

e The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.

e The steam passes through a turbine where it is involved with many
heat transfer processes, including some condensation in the last
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stages. The spent steam is then condensed in any of a variety of
heat transfer devices.

e Cooling must be provided in each stage of the electrical supply sys-
tem: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

e The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

e Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal
energy from one substance to another. In a broad sense, all these prob-
lems resolve themselves into collecting and focusing large quantities of
energy for the use of people, and then distributing and interfacing this
energy with people in such a way that they can use it on their own puny
level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics
The First Law with work equal to zero

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
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Q=Wk+9£ -
dt dt

system

a) The general case b) No work transfer

Figure 1.1 The First Law of Thermodynamics for a closed system.

rate basis:
au
Q = Wk —_ (1.1)
\ J \ J (¢ dt J
positive toward positive away positive when
the system from the system the system’s

energy increases

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
dUydt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done with-
out reference to any work processes, although heat transfer might sub-
sequently be combined with work in the analysis of real systems. If p dV
work is the only work occuring, then eqgn. (1.1) is

av du
Q=rartar (e
This equation has two well-known special cases:
T
Constant volume process: Q= i—lt] =Mcy Z—t (1.2b)
Constant pressure process: Q= GZ—I;I = mcyp 66% (1.2¢)

where H = U + pV is the enthalpy, and ¢y and ¢, are the specific heat

capacities at constant volume and constant pressure, respectively.
When the substance undergoing the process is incompressible (so that

V is constant for any pressure variation), the two specific heats are equal:
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¢y = ¢p = ¢. The proper form of eqn. (1.2a) is then

_dU _dT

Q—E—mcﬂ (13)

Since solids and liquids can frequently be approximated as being incom-
pressible, we shall often make use of egn. (1.3).
If the heat transfer were reversible, then eqn. (1.2a) would become

das av du

2

—_——— —
Qrev Wkrev

That might seem to suggest that Q can be evaluated independently for in-
clusion in either eqgn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U (t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description
of heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as T > T», heat will flow spontaneously and irreversibly from 1
to 2. In accordance with our understanding of the Second Law of Ther-
modynamics, we expect the entropy of the universe to increase as a con-
sequence of this process. If T» — Tj, the process will approach being
quasistatic and reversible. But the rate of heat transfer will also approach

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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Temperature profile for
steady state conduction

Ty, —

Thermal Thermal
reservoir #1 \ \ reservoir #2

at a constant Wall at a constant . B
temperature, temperature, Figure 1.2 Irreversible heat flow
T T2 between two thermal reservoirs through

an intervening wall.

zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at
steady state, the properties of the wall do not vary with time. We know
that the entropy of the wall depends on its state and must therefore be
constant. How, then, does the entropy of the universe increase? We turn
to this question next.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, Syn, resulting from the
preceding heat transfer process through a wall is

SUn = Sres 1+ Swall +Sres 2 (1.5)
—_—

= 0, since Swan
must be constant

where the dots denote time derivatives (i.e., x = dx/dt). Since the reser-
voir temperatures are constant,

- Q
Now Qres 1 iS negative and equal in magnitude to Qres 2, SO eqn. (1.5)
becomes
1 1

Sin = | Qe (7, - 7)) .7
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The term in parentheses is positive, so Syn > 0. This agrees with Clau-
sius’s statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence Syn,
is determined by the wall’s resistance to heat flow. Although the wall
is the agent that causes the entropy of the universe to increase, its own
entropy does not changes. Only the entropies of the reservoirs change.

1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier3 (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleur in 1822. In it he formulated a very
complete exposition of the theory of heat conduction.

He began his treatise by stating the empirical law that bears his name:
the heat flux,* g (W/m?), resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to it in sign. If
we call the constant of proportionality, k, then

ar
= k=~ 1.
1 dx (1.8)
The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m-K, or J/m-s-K, or Btu/h-ft-°F if egn. (1.8) is to be
dimensionally correct.

3Joseph Fourier lived a remarkable double life. He served as a high government
official in Napoleonic France and he was also an applied mathematician of great impor-
tance. He was with Napoleon in Egypt between 1798 and 1801, and he was subsequently
prefect of the administrative area (or “Department”) of Isere in France until Napoleon’s
first fall in 1814. During the latter period he worked on the theory of heat flow and in
1807 submitted a 234-page monograph on the subject. It was given to such luminaries
as Lagrange and Laplace for review. They found fault with his adaptation of a series
expansion suggested by Daniel Bernoulli in the eighteenth century. Fourier’s theory
of heat flow, his governing differential equation, and the now-famous “Fourier series”
solution of that equation did not emerge in print from the ensuing controversy until
1822.

4The heat flux, g, is a heat rate per unit area and can be expressed as Q /A, where A
is an appropriate area.



Help! The barn is on fire.

Let the water be analogous to heat, and let the people be analogous to the
heat transfer medium. Then:

Case 1

Case 3

The hose directs water from @ to independently of the med-
ium. This is analogous to thermal radiation in a vacuum or in most
gases.

In the bucket brigade, water goes from @ to through the
medium. This is analogous to conduction.

A single runner, representing the medium, carries water from @
to . This is analogous to convection.

Figure 1.3 An analogy for the three modes of heat transfer.

Y
il

11
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Figure 1.4 Baron Jean Baptiste Joseph Fourier (1768-1830).
(Courtesy of Appl. Mech. Rev., vol. 26, Feb. 1973.)

The heat fluxis a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, g will be positive—it will flow in the x-direction.
If T increases with x, g will be negative—it will flow opposite the x-
direction. In either case, g will flow from higher temperatures to lower
temperatures. Equation (1.8) is the one-dimensional form of Fourier’s
law. We develop its three-dimensional form in Chapter 2, namely:

g=-kVT

Example 1.1

The front of a slab of lead (k = 35 W/m-K) is kept at 110°C and the
back is kept at 50°C. If the area of the slab is 0.4 m? and it is 0.03 m
thick, compute the heat flux, q, and the heat transfer rate, Q.

SOLUTION. For the moment, we presume that dT/dx is a constant
equal to (Thack — Ttront) / (Xback — Xfront); We verify this in Chapter 2.
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Temperature
profile

Figure 1.5 Heat conduction through gas
JI - separating two solid walls.

Thus, eqn. (1.8) becomes

50 -110

_ 2 _ 2
0.03 > = +70,000 W/m 70 kW/m

q=-35 (
and
Q =qA=70(0.4) =28 kW |

In one-dimensional heat conduction problems, there is never any real
problem in deciding which way the heat should flow. It is therefore some-
times convenient to write Fourier’s law in simple scalar form:

AT

where L is the thickness in the direction of heat flow and q and AT are
both written as positive quantities. When we use egn. (1.9), we must
remember that g always flows from high to low temperatures.

Thermal conductivity values. It will help if we first consider how con-
duction occurs in, for example, a gas. We know that the molecular ve-
locity depends on temperature. Consider conduction from a hot wall to
a cold one in a situation in which gravity can be ignored, as shown in
Fig. 1.5. The molecules near the hot wall collide with it and are agitated
by the molecules of the wall. They leave with generally higher speed and
collide with their neighbors to the right, increasing the speed of those
neighbors. This process continues until the molecules on the right pass



14

Introduction §1.3

their kinetic energy to those in the cool wall. Within solids, comparable
processes occur as the molecules vibrate within their lattice structure
and as the lattice vibrates as a whole. This sort of process also occurs,
to some extent, in the electron “gas” that moves through the solid. The
processes are more efficient in solids than they are in gases. Notice that

aT q 1
oy Pl oc X (1.10)
[N ——

since, in steady
conduction, q is
constant
Thus solids, with generally higher thermal conductivities than gases,
yield smaller temperature gradients for a given heat flux. In a gas, by
the way, k is proportional to molecular speed and molar specific heat,
and inversely proportional to the cross-sectional area of molecules.
This book deals almost exclusively with S.I. units, or Systéme Interna-

tional d’Unités. Since much reference material will continue to be avail-
able in English units, we should have at hand a conversion factor for
thermal conductivity:

J h ft 1.8°F

1= 00009478 Btu " 36005 0.3048m K

Thus the conversion factor from W/m-K to its English equivalent, Btu/h-
ft°F, is

B W/m-K
1=1.731 7Btu/h-ft-°F (1.11)

Consider, for example, copper—the common substance with the highest
conductivity at ordinary temperature:

W/m-K

Btu/h-ft-F = 221 Btu/h-ft-°F

kcu atroom temp = (383 W/m'K)/1.731
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The range of thermal conductivities is enormous. As we see from
Fig. 1.6, k varies by a factor of about 10° between gases and diamond at
room temperature. This variation can be increased to about 107 if we in-
clude the effective conductivity of various cryogenic “superinsulations.”
(These involve powders, fibers, or multilayered materials that have been
evacuated of all air.) The reader should study and remember the order
of magnitude of the thermal conductivities of different types of materi-
als. This will be a help in avoiding mistakes in future computations, and
it will be a help in making assumptions during problem solving. Actual
numerical values of the thermal conductivity are given in Appendix A
(which is a broad listing of many of the physical properties you might
need in this course) and in Figs. 2.2 and 2.3.

Example 1.2

A copper slab (k = 372 W/m-K) is 3 mm thick. It is protected from
corrosion by a 2-mm-thick layers of stainless steel (k = 17 W/m-K) on
both sides. The temperature is 400°C on one side of this composite
wall and 100°C on the other. Find the temperature distribution in the
copper slab and the heat conduction through the wall (see Fig. 1.7).

SOLUTION. If we recall Fig. 1.5 and eqn. (1.10), it should be clear that
the temperature drop will take place almost entirely in the stainless
steel, where k is less than 1/20 of k in the copper. Thus, the cop-
per will be virtually isothermal at the average temperature of (400 +
100)/2 = 250°C. Furthermore, the heat conduction can be estimated
in a 4 mm slab of stainless steel as though the copper were not even
there. With the help of Fourier’s law in the form of eqn. (1.8), we get

ar
q = —ka ~17W/m-K - (

400 — 100 B 5
0.004 ) K/m =1275kW/m
The accuracy of this rough calculation can be improved by con-
sidering the copper. To do this we first solve for AT s and ATy (see
Fig. 1.7). Conservation of energy requires that the steady heat flux
through all three slabs must be the same. Therefore,

AT AT
(). )
1 ( L Jss. L Jcu
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/// N /
400°C \
Stainless
\\ steel
AT,
ATey
T Copper
HHiSeu I TRHScy
Stainless T
steel
: \\\\
/ ATgs,
[~ / N Figure 1.7 Temperature drop through a
8.5, Scu 100°C copper wall protected by stainless steel
. (Example 1.2).

but

(400 — 100)°C = ATcy + 2ATgs.
(k/L)Cu}
= AT [1 +2——=0
Cu (k/L)s.s.
= (30/18)ATcy

Solving this, we obtain ATcy = 9.94 K. So ATgs. = (300 —9.94)/2 =
145 K. It follows that Tcy, jefr = 255°C and Ty, right = 245°C.
The heat flux can be obtained by applying Fourier’s law to any of
the three layers. We consider either stainless steel layer and get
W 145K

_17 Y 130k 2
Q=17 o = 1233 kW/m

Thus our initial approximation was accurate within a few percent. i

One-dimensional heat diffusion equation. In Example 1.2 we had to
deal with a major problem that arises in heat conduction problems. The
problem is that Fourier’s law involves two dependent variables, T and
gq. To eliminate g and first solve for T, we introduced the First Law of
Thermodynamics implicitly: Conservation of energy required that g was
the same in each metallic slab.

The elimination of g from Fourier’s law must now be done in a more
general way. Consider a one-dimensional element, as shown in Fig. 1.8.
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T=Tix,1)

oT
= _kA o—
Ox
x +8x
T or T
x Ox o5 Ox
x X x
= -kA &
X + 8X Qnet 8)( X
— T By the
T2 definition
x of aderivative

Figure 1.8 One-dimensional heat conduction through a differ-
ential element.

From Fourier’s law applied at each side of the element, as shown, the net
heat conduction out of the element during general unsteady heat flow is
0°T
dnetA = Qnet = —kA X2 0x (1.12)
X
To eliminate the heat loss Qnet in favor of T, we use the general First
Law statement for closed, nonworking systems, eqn. (1.3):

au A(T — Trer)

—Qnet = — = pcA

ar
1t at 0X = pcA——06x (1.13)

dt

where p is the density of the slab and c is its specific heat capacity.’
Equations (1.12) and (1.13) can be combined to give

(e9)
~

(1.14)

R
(e))

O°T _ pedT
ox2 kot

t

>The reader might wonder if ¢ should be ¢, or ¢,. This is a strictly incompressible
equation so ¢, = ¢y, = ¢. The compressible equation involves additional terms, and
this particular term emerges with c,, in it in the conventional rearrangements of terms.
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Figure 1.9 The convective cooling of a heated body.

This is the one-dimensional heat diffusion equation. Its importance is
this: By combining the First Law with Fourier’s law, we have eliminated
the unknown Q and obtained a differential equation that can be solved
for the temperature distribution, T (x, t). It is the primary equation upon
which all of heat conduction theory is based.

The heat diffusion equation includes a new property which is as im-
portant to transient heat conduction as k is to steady-state conduction.
This is the thermal diffusivity, «

k] mdkgK

2 2
pc msK kg )~ X W/ (or ft/hr).

(04

The thermal diffusivity is a measure of how quickly a material can carry
heat away from a hot source. Since material does not just transmit heat
but must be warmed by it as well, « involves both the conductivity, k,
and the volumetric heat capacity, pc.

Heat Convection

The physical process. Consider a typical convective cooling situation.
Cool gas flows past a warm body, as shown in Fig. 1.9. The fluid imme-
diately adjacent to the body forms a thin slowed-down region called a
boundary layer. Heat is conducted into this layer, which sweeps it away
and, farther downstream, mixes it into the stream. We call such processes
of carrying heat away by a moving fluid convection.

In 1701, Isaac Newton considered the convective process and sug-
gested that the cooling would be such that

dTbody
dat

o< Thody — T (1.15)

where T, is the temperature of the oncoming fluid. This statement sug-
gests that energy is flowing from the body. But if the energy of the body
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is constantly replenished, the body temperature need not change. Then
with the help of eqn. (1.3) we get, from eqn. (1.15) (see Problem 1.2),

Q o< Thody — Teo (1.16)

This equation can be rephrased in terms of g = Q/A as

a =N (Toody — T (1.17)

This is the steady-state form of Newton’s law of cooling, as it is usually
quoted, although Newton never wrote such an expression.

The constant h is the film coefficient or heat transfer coefficient. The
bar over h indicates that it is an average over the surface of the body.
Without the bar, h denotes the “local” value of the heat transfer coef-
ficient at a point on the surface. The units of h and h are W/m?K or
J/s-m?K. The conversion factor for English units is:

| _ 00009478 Btu K 3600s (0.3048 m)?
- J 1.8°F h ft2

or

Btu/h-ft2°F

1=0.1761
0.176 W/m?K

(1.18)

It turns out that Newton oversimplified the process of convection
when he made his conjecture. Heat convection is complicated and h
can depend on the temperature difference Tyody — Towo = AT. In Chap-
ter 6 we find that h really is independent of AT in situations in which
fluid is forced past a body and AT is not too large. This is called forced
convection.

When fluid buoys up from a hot body or down from a cold one, h
varies as some weak power of AT—typically as AT/ or AT!/3. This is
called free or natural convection. If the body is hot enough to boil a liquid
surrounding it, h will typically vary as AT?2.

For the moment, we restrict consideration to situations in which New-
ton’s law is either true or at least a reasonable approximation to real
behavior.

We should have some idea of how large h might be in a given situ-
ation. Table 1.1 provides some illustrative values of h that have been
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Table 1.1 Some illustrative values of convective heat transfer
coefficients

Situation h, W/m?K
Natural convection in gases

e 0.3 mvertical wall in air, AT = 30°C 4.33
Natural convection in liquids

e 40 mm O.D. horizontal pipe in water, AT = 30°C 570

e 0.25 mm diameter wire in methanol, AT = 50°C 4,000
Forced convection of gases

e Air at 30 m/s over a 1 m flat plate, AT = 70°C 80
Forced convection of liquids

e Water at 2 m/s over a 60 mm plate, AT = 15°C 590

e Aniline-alcohol mixture at 3 m/s in a 25 mm LD. tube, AT = 80°C 2,600

e Liquid sodium at 5 m/s in a 13 mm L.D. tube at 370°C 75,000
Boiling water

e During film boiling at 1 atm 300

e In a tea kettle 4,000

e At a peak pool-boiling heat flux, 1 atm 40,000

e At a peak flow-boiling heat flux, 1 atm 100,000

e At approximate maximum convective-boiling heat flux, under

optimal conditions 106

Condensation

e In a typical horizontal cold-water-tube steam condenser 15,000

e Same, but condensing benzene 1,700

e Dropwise condensation of water at 1 atm 160,000

observed or calculated for different situations. They are only illustrative
and should not be used in calculations because the situations for which
they apply have not been fully described. Most of the values in the ta-
ble could be changed a great deal by varying quantities (such as surface
roughness or geometry) that have not been specified. The determination
of h or h is a fairly complicated task and one that will receive a great
deal of our attention. Notice, too, that h can change dramatically from
one situation to the next. Reasonable values of h range over about six
orders of magnitude.
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Example 1.3

The heat flux, g, is 6000 W/m? at the surface of an electrical heater.
The heater temperature is 120°C when it is cooled by air at 70°C.
What is the average convective heat transfer coefficient, h? What will
the heater temperature be if the power is reduced so that g is 2000
W/m?2?

SOLUTION.

q 6000

4 . PYVYVY 2
AT ~ 120_70  120W/mK

E =
If the heat flux is reduced, h should remain unchanged during forced
convection. Thus

2000 W/m?

- -16.67K
120 W/m?K 6.6

AT = Theater — 70°C = Q/E =

SO Theater = 70 +16.67 = 86.67°C |

Lumped-capacity solution. We now wish to deal with a very simple but
extremely important, kind of convective heat transfer problem. The prob-
lem is that of predicting the transient cooling of a convectively cooled
object, such as is shown in Fig. 1.9. We begin with our now-familiar First
law statement, eqn. (1.3):

dUu
= - 1.19
@ - w Y
A d
—hA(T — Te) — [pcV(T — Trer)]

at

where A and V are the surface area and volume of the body, T is the
temperature of the body, T = T(t), and Tyf is the arbitrary temperature
at which U is defined equal to zero. Thus®

AdT-Ts)  hA
i - ey T (1.20)

6Is it clear why (T — Trer) has been changed to (T — T, ) under the derivative? Remem-
ber that the derivative of a constant (like Ty Or T ) is zero. We can therefore introduce
(T — T») without invalidating the equation, and get the same dependent variable on
both sides of the equation.
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Tecr A

Temperature distribution in the body, Tp(t,x)

Tsurface = T throughout the body = Ty,

‘ ~ oT q (To— T )0 ~ (Temperature grad-)
— a - - - =

- Kbody Kp ient at surface

| surface

I ‘ _~—— Temperature distribution in
| the fluid next to the body

~
+ T . S
= ‘ x{m)
|
2ody s - =
h
Figure 1.10 The cooling of a body for which the Biot number,
hL/kyp, is small.
The general solution to this equation is
t
In(T - To) = (1.21)

-4 C
(pcV/hA)

The group pcV/hA is the time constant, T. If the initial temperature is
T(t =0) =T, then C = In(T; — T ), and the cooling of the body is given
by

T-T -t/T
- = 1.22
= (1.22)

All of the physical parameters in the problem have now been “lumped”
into the time constant. It represents the time required for a body to cool
to 1/e, or 37% of its initial temperature difference above (or below) T«.
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The ratio t/T can also be interpreted as

t  hAt(J/°C) _ capacity for convection from surface (1.23)
T pcv (/o heat capacity of the body .

Notice that the thermal conductivity is missing from eqns. (1.22) and
(1.23). The reason is that we have assumed that the temperature of the
body is nearly uniform, and this means that internal conduction is not
important. We see in Fig. 1.10 that, if L/(k,/ h) < 1, the temperature of
the body, T}, is almost constant within the body at any time. Thus

Il/i < 1 implies that Ty (x,t) = T(t) = Tsurface

and the thermal conductivity, k;, becomes irrelevant to the cooling pro-
cess. This condition must be satisfied or the lumped-capacity solution
will not be accurate.

We call the group hL/k, the Biot number’, Bi. If Bi were large, of
course, the situation would be reversed, as shown in Fig. 1.11. In this
case Bi = hL/kp, > 1 and the convection process offers little resistance
to heat transfer. We could solve the heat diffusion equation

0°T 10T

0x2 ot
subject to the simple boundary condition T(x,t) = T, when x = L, to
determine the temperature in the body and its rate of cooling in this case.
The Biot number will therefore be the basis for determining what sort of
problem we have to solve.

To calculate the rate of entropy production in a lumped-capacity sys-
tem, we note that the entropy change of the universe is the sum of the
entropy decrease of the body and the more rapid entropy increase of
the surroundings. The source of irreversibility is heat flow through the
boundary layer. Accordingly, we write the time rate of change of entropy
of the universe, dSyn/dt = Sun, as

_Qrev + Qrev

Sun = Sp + Ssurroundings =

“Pronounced Bee-oh. ].B. Biot, although younger than Fourier, worked on the anal-
ysis of heat conduction even earlier—in 1802 or 1803. He grappled with the problem
of including external convection in heat conduction analyses in 1804 but could not see
how to do it. Fourier read Biot’s work and by 1807 had determined how to analyze the
problem. (Later we encounter a similar dimensionless group called the Nusselt num-
ber, Nu = hL/kgauq. The latter relates only to the boundary layer and not to the body
being cooled. We deal with it extensively in the study of convection.)
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- / The body being cooled /
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¢

Figure 1.11 The cooling of a body for which the Biot number,
hL/ky, is large.

or

S aty <L i)
SUH B pcv dt Too Tb ’

We can multiply both sides of this equation by dt and integrate the right-
hand side from T, (t = 0) = Ty to T} at the time of interest:
1 1
AS = —pcV (

Tpo

Equation 1.24 will give a positive AS whether T}, > T, or T, < T+ because
the sign of d T}, will always opposed the sign of the integrand.

Example 1.4

A thermocouple bead is largely solder, 1 mm in diameter. Itis initially
at room temperature and is suddenly placed in a 200°C gas flow. The
heat transfer coefficient h is 250 W/m?2K, and the effective values
of k, p, and ¢ are 45 W/m-K, 9300 kg/m3, and ¢ = 0.18 kJ/kg-K,
respectively. Evaluate the response of the thermocouple.
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SOLUTION. The time constant, T, is

pcV._ pe mD6 _ pcD

hA h mwD?2  6h

(9300)(0.18)(0.001) kg kJ _ m2K 1000 W
6(250) md kg K W KJ/s

T:

= 1.116s

Therefore, eqn. (1.22) becomes

T —200°C _ e—t/1.116

(20 =200)°C _ or T =200 — 180 ¢~ t/1.116 o

This resultis plotted in Fig. 1.12, where we see that, for all practical
purposes, this thermocouple catches up with the gas stream in less
than 5 s. Indeed, it should be apparent that any such system will
come within 95% of the signal in three time constants. Notice, too,
that if the response could continue at its initial rate, the thermocouple
would reach the signal temperature in one time constant.

This calculation is based entirely on the assumption that Bi <« 1
for the thermocouple. We must check that assumption:

hL _ (250 W/m*K)(0.001 m)/2

K 45 W/m-K = 0.00278

Bi =

This is very small indeed, so the assumption is valid. |

Experiment 1.2

Invent and carry out a simple procedure for evaluating the time con-
stant of a fever thermometer in your mouth.

Radiation

Heat transfer by thermal radiation. All bodies constantly emit energy
by a process of electromagnetic radiation. The intensity of such energy
flux depends upon the temperature of the body and the nature of its
surface. Most of the heat that reaches you when you sit in front of a fire
is radiant energy. Radiant energy browns your toast in an electric toaster
and it warms you when you walk in the sun.
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Figure 1.12 Thermocouple response to a hot gas flow.

Objects that are cooler than the fire, the toaster, or the sun emit much
less energy because the energy emission varies as the fourth power of ab-
solute temperature. Very often, the emission of energy, or radiant heat
transfer, from cooler bodies can be neglected in comparison with con-
vection and conduction. But heat transfer processes that occur at high
temperature, or with conduction or convection suppressed by evacuated
insulations, usually involve a significant fraction of radiation.

Experiment 1.3

Open the freezer door to your refrigerator. Put your face near it, but
stay far enough away to avoid the downwash of cooled air. This way you
cannot be cooled by convection and, because the air between you and the
freezer is a fine insulator, you cannot be cooled by conduction. Still your
face will feel cooler. The reason is that you radiate heat directly into the
cold region and it radiates very little heat to you. Consequently, your
face cools perceptibly.
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Table 1.2 Forms of the electromagnetic wave spectrum

Characterization Wavelength, A
Cosmic rays < 0.3 pm
Gamma rays 0.3-100 pm
X rays 0.01-30 nm
Ultraviolet light 3-400 nm

Visible light 0.4-0.7 pm Thermal Radiation

Near infrared radiation 0.7-30 pm 0.1-1000 ym

Far infrared radiation 30-1000 pm
Millimeter waves 1-10 mm
Microwaves 10-300 mm
Shortwave radio & TV 300 mm-100 m
Longwave radio 100 m-30 km

The electromagnetic spectrum. Thermal radiation occurs in a range
of the electromagnetic spectrum of energy emission. Accordingly, it ex-
hibits the same wavelike properties as light or radio waves. Each quan-
tum of radiant energy has a wavelength, A, and a frequency, v, associated
with it.

The full electromagnetic spectrum includes an enormous range of
energy-bearing waves, of which heat is only a small part. Table 1.2 lists
the various forms over a range of wavelengths that spans 24 orders of
magnitude. Only the tiniest “window” exists in this spectrum through
which we can see the world around us. Heat radiation, whose main com-
ponent is usually the spectrum of infrared radiation, passes through the
much larger window—about three orders of magnitude in A or v.

Black bodies. The model for the perfect thermal radiator is a so-called
black body. This is a body which absorbs all energy that reaches it and
reflects nothing. The term can be a little confusing, since such bodies
emit energy. Thus, if we possessed infrared vision, a black body would
glow with “color” appropriate to its temperature. of course, perfect ra-
diators are “black” in the sense that they absorb all visible light (and all
other radiation) that reaches them.

It is necessary to have an experimental method for making a perfectly
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Figure 1.13 Cross section of a spherical hohlraum. The hole
has the attributes of a nearly perfect thermal black body.

black body. The conventional device for approaching this ideal is called
by the German term hohlraum, which literally means “hollow space”.
Figure 1.13 shows how a hohlraum is arranged. It is simply a device that
traps all the energy that reaches the aperture.

What are the important features of a thermally black body? First
consider a distinction between heat and infrared radiation. Infrared ra-
diation refers to a particular range of wavelengths, while heat refers to
the whole range of radiant energy flowing from one body to another.
Suppose that a radiant heat flux, g, falls upon a translucent plate that
is not black, as shown in Fig. 1.14. A fraction, «, of the total incident
energy, called the absorptance, is absorbed in the body; a fraction, p,
called the reflectance, is reflected from it; and a fraction, T, called the
transmittance, passes through. Thus

l=a+p+T71 (1.25)

This relation can also be written for the energy carried by each wave-
length in the distribution of wavelengths that makes up heat from a
source at any temperature:

1 =oc)+pr+Ta (1.26)

All radiant energy incident on a black body is absorbed, so that «; or
xp, = 1 and pp = Tp = 0. Furthermore, the energy emitted from a
black body reaches a theoretical maximum, which is given by the Stefan-
Boltzmann law. We look at this next.
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The Stefan-Boltzmann law. The flux of energy radiating from a body
is commonly designated e(T) W/ m?2. The symbol e, (A, T) designates the
distribution function of radiative flux in A, or the monochromatic emissive
power:

A

or e(\,T) = JO eax(A, T)dA (1.27)

de(A,T)

ea(\,T) = R

Thus
e(T) = E(co, T) = J ex(A, T) dA
0
The dependence of e(T) on T for a black body was established experi-

mentally by Stefan in 1879 and explained by Boltzmann on the basis of
thermodynamics arguments in 1884. The Stefan-Boltzmann law is

ep(T) =0T (1.28)

where the Stefan-Boltzmann constant, o, is 5.670400 x 10~8 W/m?2-K4
or 1.714 x 1079 Btu/hr-ft2-°R*, and T is the absolute temperature.

ex vs. A.  Nature requires that, at a given temperature, a body will emit
a unique distribution of energy in wavelength. Thus, when you heat a
poker in the fire, it first glows a dull red—emitting most of its energy
at long wavelengths and just a little bit in the visible regime. When it is
white-hot, the energy distribution has been both greatly increased and
shifted toward the shorter-wavelength visible range. At each tempera-
ture, a black body yvields the highest value of e, that a body can attain.
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The very accurate measurements of the black-body energy spectrum
by Lummer and Pringsheim (1899) are shown in Fig. 1.15. The locus of
maxima of the curves is also plotted. It obeys a relation called Wien'’s
law:

(AT)ey o = 2898 nm-K (1.29)

About three-fourths of the radiant energy of a black body lies to the right
of this line in Fig. 1.15. Notice that, while the locus of maxima leans
toward the visible range at higher temperatures, only a small fraction of
the radiation is visible even at the highest temperature.

Predicting how the monochromatic emissive power of a black body
depends on A was an increasingly serious problem at the close of the
nineteenth century. The prediction was a keystone of the most profound
scientific revolution the world has seen. In 1901, Max Planck made the
prediction, and his work included the initial formulation of quantum me-
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chanics. He found that

B 21hc?
~ AS[exp(hco/kgTA) — 1]

ex, (1.30)
where ¢, is the speed of light, 2.99792458 x 108 m/s; h is Planck’s con-
stant, 6.62606876x10734 J-s; and kp is Boltzmann’s constant, 1.3806503 x
1023 J/K.

Radiant heat exchange. Suppose that a heated object (1 in Fig. 1.16a)
radiates only to some other object (2) and that both objects are thermally
black. All heat leaving object 1 arrives at object 2, and all heat arriving
at object 1 comes from object 2. Thus, the net heat transferred from
object 1 to object 2, Qnet, is the difference between Q12 = Ajep(T7)
and Q21 = A1ep(T2)

Qnet = Arep(T1) — Arey(Tz) = Ao (T} - T3) (1.31)

If the first object “sees” other objects in addition to object 2, as indicated
in Fig. 1.16b, then a view factor (sometimes called a configuration factor
or a shape factor), F1-», must be included in eqn. (1.31):

Qnet = A1F12 07 (T} - T3 (1.32)

We may regard Fi-» as the fraction of energy leaving object 1 that is
intercepted by object 2.

Example 1.5

A black thermocouple measures the temperature in a chamber with
black walls. If the air around the thermocouple is at 20°C, the walls
are at 100°C, and the heat transfer coefficient between the thermocou-
ple and the air is 15 W/m?K, what temperature will the thermocouple
read?

SOLUTION. The heat convected away from the thermocouple by the
air must exactly balance that radiated to it by the hot walls if the sys-
tem is in steady state. Furthermore, F1-» = 1 since the thermocouple
(1) radiates all its energy to the walls (2):

EAtC (Tte — Tair) = —Qnet = _Atc0'<Tt4c - Téall)
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only to object 2 and to other things as well

Figure 1.16 The net radiant heat transfer from one object to
another.

or, with T. in °C,

15(Tte — 20) W/m? =
5.6704 x 1078 [ (100 + 273)* — (Tye + 273)*] W/m?
since T for radiation must be in kelvin. Trial-and-error solution of

this equation yields T;. = 51°C. |

We have seen that non-black bodies absorb less radiation than black
bodies, which are perfect absorbers. Likewise, non-black bodies emit less
radiation than black bodies, which also happen to be perfect emitters. We
can characterize the emissive power of a non-black body using a property
called emittance, ¢:

€non-black = &€p = eoT? (1.33)

where 0 < € < 1. When radiation is exchanged between two bodies that
are not black, we have

Quet = A1 F120 (T = T3) (1.34)

where the transfer factor, F1-», depends on the emittances of both bodies
as well as the geometrical “view”.



Introduction §1.3

The expression for Fj-» is particularly simple in the important special
case of a small object, 1, in a much larger isothermal environment, 2:

Fio=¢& for A; < A> (1.35)

Example 1.6

Suppose that the thermocouple in Example 1.5 was not black and
had an emissivity of € = 0.4. Further suppose that the walls were
not black and had a much larger surface area than the thermocouple.
What temperature would the thermocouple read?

SOLUTION. Qpet is now given by eqn. (1.34) and F;-» can be found
with eqgn. (1.35):

hAte (Tte = Tair) = _Atcftco'(thlc - Tégﬂ)

or

15(Tye — 20) W/m? =
(0.4)(5.6704 x 1078) [(100 +273)4 — (Tye + 273)4] W/m?

Trial-and-error yields T;. = 35°C. |

Radiation shielding. The preceding examples point out an important
practical problem than can be solved with radiation shielding. The idea
is as follows: If we want to measure the true air temperature, we can
place a thin foil casing, or shield, around the thermocouple. The casing
is shaped to obstruct the thermocouple’s “view” of the room but to permit
the free flow of the air around the thermocouple. Then the shield, like
the thermocouple in the two examples, will be cooler than the walls, and
the thermocouple it surrounds will be influenced by this much cooler
radiator. If the shield is highly reflecting on the outside, it will assume a
temperature still closer to that of the air and the error will be still less.
Multiple layers of shielding can further reduce the error.

Radiation shielding can take many forms and serve many purposes.
It is an important element in superinsulations. A glass firescreen in a
fireplace serves as a radiation shield because it is largely opaque to ra-
diation. It absorbs heat radiated by the fire and reradiates that energy
(ineffectively) at a temperature much lower than that of the fire.
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Experiment 1.4

Find a small open flame that produces a fair amount of soot. A candle,
kerosene lamp, or a cutting torch with a fuel-rich mixture should work
well. A clean blue flame will not work well because such gases do not
radiate much heat. First, place your finger in a position about 1 to 2 cm
to one side of the flame, where it becomes uncomfortably hot. Now take
a piece of fine mesh screen and dip it in some soapy water, which will fill
up the holes. Put it between your finger and the flame. You will see that
your finger is protected from the heating until the water evaporates.

Water is relatively transparent to light. What does this experiment
show you about the transmittance of water to infrared wavelengths?

1.4 A look ahead

What we have done up to this point has been no more than to reveal the
tip of the iceberg. The basic mechanisms of heat transfer have been ex-
plained and some quantitative relations have been presented. However,
this information will barely get you started when you are faced with a real
heat transfer problem. Three tasks, in particular, must be completed to
solve actual problems:

e The heat diffusion equation must be solved subject to appropriate
boundary conditions if the problem involves heat conduction of any
complexity.

e The convective heat transfer coefficient, h, must be determined if
convection is important in a problem.

e The factor Fi-» or F1-» must be determined to calculate radiative
heat transfer.

Any of these determinations can involve a great deal of complication,
and most of the chapters that lie ahead are devoted to these three basic
problems.

Before becoming engrossed in these three questions, we shall first
look at the archetypical applied problem of heat transfer-namely, the
design of a heat exchanger. Chapter 2 sets up the elementary analytical
apparatus that is needed for this, and Chapter 3 shows how to do such
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design if h is already known. This will make it easier to see the impor-
tance of undertaking the three basic problems in subsequent parts of the
book.

1.5 Problems

We have noted that this book is set down almost exclusively in S.I. units.
The student who has problems with dimensional conversion will find
Appendix B helpful. The only use of English units appears in some of the
problems at the end of each chapter. A few such problems are included
to provide experience in converting back into English units, since such
units will undoubtedly persist in the U.S.A. for many more years.

Another matter often leads to some discussion between students and
teachers in heat transfer courses. That is the question of whether a prob-
lem is “theoretical” or “practical”. Quite often the student is inclined to
view as “theoretical” a problem that does not involve numbers or that
requires the development of algebraic results.

The problems assigned in this book are all intended to be useful in
that they do one or more of five things:

1. They involve a calculation of a type that actually arises in practice
(e.g., Problems 1.1, 1.3, 1.8 to 1.18, and 1.21 through 1.25).

2. They illustrate a physical principle (e.g., Problems 1.2, 1.4 to 1.7,
1.9, 1.20, 1.32, and 1.39). These are probably closest to having a
“theoretical” objective.

3. They ask you to use methods developed in the text to develop other
results that would be needed in certain applied problems (e.g., Prob-
lems 1.10,1.16,1.17,and 1.21). Such problems are usually the most
difficult and the most valuable to you.

4. They anticipate development that will appear in subsequent chap-
ters (e.g., Problems 1.16, 1.20, 1.40, and 1.41).

5. They require that you develop your ability to handle numerical and
algebraic computation effectively. (This is the case with most of the
problems in Chapter 1, but it is especially true of Problems 1.6 to
1.9, 1.15, and 1.17).
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Partial numerical answers to some of the problems follow them in
brackets. Tables of physical property data useful in solving the problems
are given in Appendix A.

Actually, we wish to look at the theory, analysis, and practice of heat
transfer—all three—according to Webster’s definitions:

Theory: “a systematic statement of principles; a formulation of apparent
relationships or underlying principles of certain observed phenom-

ena.

Analysis: “the solving of problems by the means of equations; the break-
ing up of any whole into its parts so as to find out their nature,
function, relationship, etc.”

Practice: “the doing of something as an application of knowledge.”

Problems

1.1 A composite wall consists of alternate layers of fir (5 cm thick),
aluminum (1 cm thick), lead (1 cm thick), and corkboard (6
cm thick). The temperature is 60°C on the outside of the for
and 10°C on the outside of the corkboard. Plot the tempera-
ture gradient through the wall. Does the temperature profile
suggest any simplifying assumptions that might be made in
subsequent analysis of the wall?

1.2 Verify egn. (1.15).

1.3 q = 5000 W/m?ina 1 cmslab and T = 140°C on the cold side.
Tabulate the temperature drop through the slab if it is made
of

e Silver

e Aluminum

o Mild steel (0.5 % carbon)

e Ice

e Spruce

¢ Insulation (85 % magnesia)
¢ Silica aerogel

Indicate which situations would be unreasonable and why.
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1.4

1.5

1.6

1.7

1.8

Explain in words why the heat diffusion equation, eqn. (1.13),
shows that in transient conduction the temperature depends
on the thermal diffusivity, «, but we can solve steady conduc-
tion problems using just k (as in Example 1.1).

A 1 m rod of pure copper 1 cm? in cross section connects
a 200°C thermal reservoir with a 0°C thermal reservoir. The
system has already reached steady state. What are the rates
of change of entropy of (a) the first reservoir, (b) the second
reservoir, (c) the rod, and (d) the whole universe, as a result of
the process? Explain whether or not your answer satisfies the
Second Law of Thermodynamics. [(d): +0.0120 W/K.]

Two thermal energy reservoirs at temperatures of 27°C and
—43°C, respectively, are separated by a slab of material 10
cm thick and 930 cm? in cross-sectional area. The slab has
a thermal conductivity of 0.14 W/m-K. The system is operat-
ing at steady-state conditions. what are the rates of change of
entropy of (a) the higher temperature reservoir, (b) the lower
temperature reservoir, (c) the slab, and (d) the whole universe
as a result of this process? (e) Does your answer satisfy the
Second Law of Thermodynamics?

(a) If the thermal energy reservoirs in Problem 1.6 are suddenly
replaced with adiabatic walls, determine the final equilibrium
temperature of the slab. (b) what is the entropy change for the
slab for this process? (c) Does your answer satisfy the Second
Law of Thermodynamics in this instance? Explain. The density
of the slab is 26 Ib/ft3 and the specific heat is 0.65 Btu/lb-°F.
[(b): 30.81 J/K].

A copper sphere 2.5 cm in diameter has a uniform temperature
of 40°C. The sphere is suspended is a slow-moving air stream
at 0°C. The air stream produces a convection heat transfer co-
efficient of 15 W/m?K. Radiation can be neglected. Since cop-
per is highly conductive, temperature gradients in the sphere
will smooth out rapidly, and its temperature can be taken as
uniform throughout the cooling process (i.e., Bi <« 1). Write
the instantaneous energy balance between the sphere and the
surrounding air. Solve this equation and plot the resulting
temperatures as a function of time between 40°C and 0°C.
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1.9 Determine the total heat transfer in Problem 1.8 as the sphere
cools from 40°C to 0°C. Plot the net entropy increase result-
ing from the cooling process above, AS vs. T (K). [Total heat
transfer = 1123 J.]

1.10 A truncated cone 30 cm high is constructed of Portland ce-
ment. The diameter at the top is 15 ¢cm and at the bottom is
7.5 cm. The lower surface is maintained at 6°C and the top at
40°C. The other surface is insulated. Assume one-dimensional
heat transfer and calculate the rate of heat transfer in watts
from top to bottom. To do this, note that the heat transfer, Q,
must be the same at every cross section. Write Fourier’s law
locally, and integrate it from top to bottom to get a relation
between this unknown Q and the known end temperatures.
[Q =-1.70 W.]

1.11 A hot water heater contains 100 kg of water at 75°C in a 20°C
room. Its surface area is 1.3 m2. Select an insulating material,
and specify its thickness, to keep the water from cooling more
than 3°C/h. (Notice that this problem will be greatly simplified
if the temperature drop in the steel casing and the temperature
drop in the convective boundary layers are negligible. Can you
make such assumptions? Explain.)

Vacuum

(T_=100°C) (T_=20°C)

50 W/m?-°C
20 W/m2-°¢

h
h

Figure 1.17 Configuration for
Problem 1.12

1.12 What is the temperature at the left-hand wall shown in Fig. 1.17.
Both walls are thin, very large in extent, highly conducting, and
thermally black. [Tright = 42.5°C.]

1.13 Develop S.I. to English conversion factors for:

¢ The thermal diffusivity, «
e The heat flux, g
e The density, p
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Figure 1.18 Configuration for

Problem 1.14

1.14

1.15

1.16

e The Stefan-Boltzmann constant, o
e The view factor, Fi-»

e The molar entropy

e The specific heat per unit mass, ¢

In each case, begin with basic dimension J, m, kg, s, °C, and
check your answers against Appendix B if possible.

/» 0°c
100°C (v

Three infinite, parallel, black, opaque plates transfer heat by
radiation, as shown in Fig. 1.18. Find T>.

Four infinite, parallel, black, opaque plates transfer heat by
radiation, as shownin Fig. 1.19. Find T> and T3. [T> = 75.53°C.]

Two large, black, horizontal plates are spaced a distance L
from one another. The top one is warm at a controllable tem-
perature, Ty, and the bottom one is cool at a specified temper-
ature, T.. A gas separates them. The gas is stationary because
it is warm on the top and cold on the bottom. Write the equa-
tion Grad/qcond = (N, = Tj,/T.), where N is a dimension-
less group containing o, k, L, and T,. Plot N as a function of
O for grad/qconda = 1, 0.8, and 1.2 (and for other values if you
wish).

Now suppose that you have a system in which L = 10 cm,
T, = 100 K, and the gas is hydrogen with an average k of
0.1 W/m-K. Further suppose that you wish to operate in such a
way that the conduction and radiation heat fluxes are identical.
Identify the operating point on your curve and report the value
of T}, that you must maintain.
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q

N 7
100°C </-

Figure 1.19 Configuration for
Problem 1.15

1.17 A blackened copper sphere 2 cm in diameter and uniformly at
200°C is introduced into an evacuated black chamber that is
maintained at 20°C.

o Write a differential equation that expresses T(t) for the
sphere, assuming lumped thermal capacity.

o Identify a dimensionless group, analogous to the Biot num-
ber, than can be used to tell whether or not the lumped-
capacity solution is valid.

e Show that the lumped-capacity solution is valid.

¢ Integrate your differential equation and plot the temper-
ature response for the sphere.

1.18 As part of a space experiment, a small instrumentation pack-
age is released from a space vehicle. It can be approximated
as a solid aluminum sphere, 4 cm in diameter. The sphere is
initially at 30°C and it contains a pressurized hydrogen com-
ponent that will condense and malfunction at 30 K. If we take
the surrounding space to be at 0 K, how long may we expect the
implementation package to function properly? Is it legitimate
to use the lumped-capacity method in solving the problem?
(Hint: See the directions for Problem 1.17.) [Time = 5.8 weeks.]

1.19 Consider heat conduction through the wall as shown in Fig. 1.20.
Calculate g and the temperature of the right-hand side of the
wall.

1.20 Throughout Chapter 1 we have assumed that the steady tem-
perature distribution in a plane uniform wall in linear. To
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Figure 1.20 Configuration for
Problem 1.19

1.21

Figure 1.21 Configuration for
Problem 1.22

1.22

1.23

1.24

|- 0.5 m

R k=2

prove this, simplify the heat diffusion equation to the form
appropriate for steady flow. Then integrate it twice and elimi-
nate the two constants using the known outside temperatures
Tietr and Tright at x = 0 and x = wall thickness, L.

The thermal conductivity in a particular plane wall depends as
follows on the wall temperature: k = A + BT, where A and B
are constants. The temperatures are T; and T> on either side
if the wall, and its thickness is L. Develop an expression for g.
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Find k for the wall shown in Fig. 1.21. Of what might it be
made?

What are T;, T}, and T) in the wall shown in Fig. 1.22? [T; =
16.44°C.]

An aluminum can of beer or soda pop is removed from the
refrigerator and set on the table. If h is 13.5 W/m?K, estimate
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1.25

1.26

1.27

1.28

when the beverage will be at 15°C. Ignore thermal radiation.
State all of your other assumptions.

One large, black wall at 27°C faces another whose surface is
127°C. The gap between the two walls is evacuated. If the sec-
ond wall is 0.1 m thick and has a thermal conductivity of 17.5
W/m-K, what is its temperature on the back side? (Assume
steady state.)

A 1 cm diameter, 1% carbon steel sphere, initially at 200°C, is
cooled by natural convection, with air at 20°C. In this case, h is
not independent of temperature. Instead, h = 3.51(AT°C)!/4
W/m?K. Plot Tsphere as a function of t. Verify the lumped-
capacity assumption.

A 3 cm diameter, black spherical heater is kept at 1100°C. It
radiates through an evacuated annulus to a surrounding spher-
ical shell of Nichrome V. The shell has a 9 cm inside diameter
and is 0.3 cm thick. It is black on the inside and is held at
25°C on the outside. Find (a) the temperature of the inner wall
of the shell and (b) the heat transfer, Q. (Treat the shell as a
plane wall.)

The sun radiates 650 W/m? on the surface of a particular lake.
At what rate (in mm/hr) would the lake evaporate away if all of
this energy went to evaporating water? Discuss as many other

k =4 W/mSC

100°C Ti 25°C

Figure 1.22 Configuration for Problem 1.23



44

Chapter 1: Introduction

1.29

1.30

131

1.32

1.33

1.34

1.35

ways you can think of that this energy can be distributed (htg
for water is 2,257,000 J/kg). Do you suppose much of the 650
W/m? goes to evaporation?

It is proposed to make picnic cups, 0.005 m thick, of a new
plastic for which k = ko (1 + aT?), where T is expressed in °C,
ko, = 0.15 W/m-K, and a = 1074 °C~2. We are concerned with
thermal behavior in the extreme case in which T = 100°C in
the cup and 0°C outside. Plot T against position in the cup
wall and find the heat loss, g.

A disc-shaped wafer of diamond 1 Ib is the target of a very high
intensity laser. The disc is 5 mm in diameter and 1 mm deep.
The flat side is pulsed intermittently with 101° W/m? of energy
for one microsecond. It is then cooled by natural convection
from that same side until the next pulse. If h = 10 W/m?K and
T=30°C, plot Tgisc as a function of time for pulses that are 50
s apart and 100 s apart. (Note that you must determine the
temperature the disc reaches before it is pulsed each time.)

A 150 W light bulb is roughly a 0.006 m diameter sphere. Its
steady surface temperature in room air is 90°C, and h on the
outside is 7 W/m2K. What fraction of the heat transfer from
the bulb is by radiation directly from the filament through the
glass? (State any additional assumptions.)

How much entropy does the light bulb in Problem 1.31 pro-
duce?

Air at 20°C flows over one side of a thin metal sheet (h = 10.6
W/m?2K). Methanol at 87°C flows over the other side (h = 141
W/m?2K). The metal functions as an electrical resistance heater,
releasing 1000 W/m?2. Calculate (a) the heater temperature, (b)
the heat transfer from the methanol to the heater, and (c) the
heat transfer from the heater to the air.

A black heater is simultaneously cooled by 20°C air (h = 14.6
W/m?K) and by radiation to a parallel black wall at 80°C. What
is the temperature of the first wall if it delivers 9000 W/m?.

An 8 oz. can of beer is taken from a 3°C refrigerator and placed
ina25°Croom. The 6.3 cm diameter by 9 cm high can is placed
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1.36

1.37

1.38

1.39

1.40

1.41

1.42

on an insulated surface (h = 7.3 W/m?K). How long will it
take to reach 12°C? Ignore thermal radiation, and discuss your
other assumptions.

A resistance heater in the form of a thin sheet runs parallel
with 3 cm slabs of cast iron on either side of an evacuated
cavity. The heater, which releases 8000 W/m?, and the cast
iron are very nearly black. The outside surfaces of the cast
iron slabs are kept at 10°C. Determine the heater temperature
and the inside slab temperatures.

A black wall at 1200°C radiates to the left side of a parallel
slab of type 316 stainless steel, 5 mm thick. The right side of
the slab is to be cooled convectively and is not to exceed 0°C.
Suggest a convective process that will achieve this.

A cooler keeps one side of a 2 cm layer of ice at —10°C. The
other side is exposed to air at 15°C. What is h just on the
edge of melting? Must h be raised or lowered if melting is to
progress?

At what minimum temperature does a black heater deliver its
maximum monochromatic emissive power in the visible range?
Compare your result with Fig. 10.2.

The local heat transfer coefficient during the laminar flow of
fluid over a flat plate of length L is equal to F/x!/2, where F is
a function of fluid properties and the flow velocity. How does
h compare with h(x = L)? (x is the distance from the leading
edge of the plate.)

An object is initially at a temperature above that of its sur-
roundings. We have seen that many kinds of convective pro-
cesses will bring the object into equilibrium with its surround-
ings. Describe the characteristics of a process that will do so
with the least net increase of the entropy of the universe.

A 250°C cylindrical copper billet, 4 cm in diameter and 8 cm
long, is cooled in air at 25°C. The heat transfer coefficient
is 5 W/m?K. Can this be treated as lumped-capacity cooling?
What is the temperature of the billet after 10 minutes?
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1.43 The sun’s diameter is 1,392,000 km, and it emits energy as if
it were a black body at 5777 K. Determine the rate at which it
emits energy. Compare this with a value from the literature.
What is the sun’s energy output in a year?

Bibliography of Historical and Advanced Texts

We include no specific references for the ideas introduced in Chapter 1
since these may be found in introductory thermodynamics or physics
books. References 1-6 are some texts which have strongly influenced
the field. The rest are relatively advanced texts or handbooks which go
beyond the present textbook.
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2. Heat conduction concepts,
thermal resistance, and the

overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the

general coin that purchases all things. . .

Don Quixote, M. de Cervantes

2.1 The heat diffusion equation
Objective

We must now develop some ideas that will be needed for the design of
heat exchangers. The most important of these is the notion of an overall
heat transfer coefficient. This is a measure of the general resistance of a
heat exchanger to the flow of heat, and usually it must be built up from
analyses of component resistances. In particular, we must know how to
predict h and how to evaluate the conductive resistance of bodies more
complicated than plane passive walls. The evaluation of h is a matter
that must be deferred to Chapter 6 and 7. For the present, h values must
be considered to be given information in any problem.

The heat conduction component of most heat exchanger problems is
more complex than the simple planar analyses done in Chapter 1. To
do such analyses, we must next derive the heat conduction equation and
learn to solve it.

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason (heating from one side,
in this case), there is a space- and time-dependent temperature field in
the body. This field T = T(x,y,z,t) or T(¥,t), defines instantaneous
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o <

T = Tix,y,z,t) = T{r,t)

T =T, = constant
{an isotherm)

Figure 2.1 A three-dimensional, transient temperature field.

isothermal surfaces, T7, T», and so on.

We next consider a very important vector associated with the scalar,
T. The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
VT:

0T 0T =0T
VT:lax+Jay+kaZ (2.1)

Fourier’s law

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
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These are:
i _ vT {This says that § and VT are exactly opposite one
71 VT another in direction

and

G| o< |VT] This says that the magnitude of the heat flux is di-
q rectly proportional to the temperature gradient

Notice that the heat flux is now written as a quantity that has a specified
direction as well as a specified magnitude. Fourier’s law summarizes this
physical experience succinctly as

G=-kVT (2.2)

which resolves itself into three components:

oT oT oT
dx = _ka ay = _k@ az = _kE

The coefficient k—the thermal conductivity—also depends on position
and temperature in the most general case:

k=k[r,T(7,t)] (2.3)

Fortunately, most materials (though not all of them) are very nearly ho-
mogeneous. Thus we can usually write k = k(T). The assumption that
we really want to make is that k is constant. Whether or not that is legit-
imate must be determined in each case. As is apparent from Fig. 2.2 and
Fig. 2.3, k almost always varies with temperature. It always rises with T
in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0° and 40°C (see Fig. 2.2), but we would incur error between
—100° and 800°C.

It is easy to prove (Problem 2.1) that if k varies linearly with T, and
if heat transfer is plane and steady, then q = kAT/L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar
or if k is not simply A + BT, it can be much more difficult to specify a
single accurate effective value of k. If AT is not large, one can still make a
reasonably accurate approximation using a constant average value of k.
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Thermal conductivity, k (W/m-"K}

0.7

Pt T

Water at 200 atm

05 |V \ Saturated water

Saturated ammonia
Hydrogen
Ethylene glycol

Helium

02 [

Saturated SO,

0.1 — p—
— Air —
0.05 | —
Ammonia N,
vapor
— —
Saturated steam
Air and N,
002 |__ —
0.015 | I | | ( |
—100 0 100 200 300 400 500 550

Temperature, T{°C)

Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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Figure 2.4 Control volume in a

heat-flow field.

—
n

There is a heat
source, § () w/m?3
distributed through R

Now that we have revisited Fourier’s law in three dimensions, we see
that heat conduction is more complex than it appeared to be in Chapter 1.
We must now write the heat conduction equation in three dimensions.
We begin, as we did in Chapter 1, with the First Law statement, eqn. (1.3):

au

Q= dt (1.3)
This time we apply egn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.! The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume and the region as R; both are at rest. An element of the surface,
dsS, is identified and two vectors are shown on dS: one is the unit normal
vector, 7 (with |71] = 1), and the other is the heat flux vector, § = —kVT,
at that point on the surface.

We also allow the possibility that a volumetric heat release equal to
q(7) W/m3 is distributed through the region. This might be the result of
chemical or nuclear reaction, of electrical resistance heating, of external
radiation into the region or of still other causes.

With reference to Fig. 2.4, we can write the heat conducted out of dS,
in watts, as

(=kVT) - (1dS) (2.4)

The heat generated (or consumed) within the region R must be added to
the total heat flow into S to get the overall rate of heat addition to R:

Q= —J (—kVT) - (ndS) +J qdR (2.5)
S R

IFigure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

dU oT
_ <p
R

where the derivative of T is in partial form because T is a function of
both ¥ and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain

I kVT -1ndS = J [pcaT - q] dR (2.7)
Ry R ot

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if A is any continuous function of position, then

Iﬁ-ﬁdszj V- AdR (2.8)
s R
Therefore, if we identify A with (kVT), eqn. (2.7) reduces to

J (V-kVT—pcaTJrq) dR =0 (2.9)
R ot

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.? We therefore get the heat diffusion equation in three dimensions:

V-kVT +q = pcaa—]; (2.10)

The limitations on this equation are:

e Incompressible medium. (This was implied when no expansion
work term was included.)

e No convection. (The medium cannot undergo any relative motion.
However, it can be a liquid or gas as long as it sits still.)

2Consider [ f(x)dx = 0. If f(x) were, say, sin x, then this could only be true
over intervals of x = 27 or multiples of it. For egn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must be zero everywhere.
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If the variation of k with T is small, k can be factored out of eqn. (2.10)
to get

q_10T

V2T +
k oot

(2.11)

This is a more complete version of the heat conduction equation [recall
eqn. (1.14)] and « is the thermal diffusivity which was discussed after
eqn. (1.14). The term V2T = V - VT is called the Laplacian. It arises thus
in a Cartesian coordinate system:

-0 -0 ~ 0 0T 0T -0T
VkVT_kVVT_k(la)C+Ja:)/+ka)C> . (la_)(+JaJ/+kaZ)

or

_9°T  2°T  °T
-~ 0x2  0y?  0z?

V2T (2.12)

The Laplacian can also be expressed in cylindrical or spherical coor-
dinates. The results are:

e Cylindrical:

10 oT 1 22T 0°T
2 = —_——— — S — P
VT =5y (”ar) 2502 T 522 (2.13)
e Spherical:
102(rT) 1 0 ( . a:r) 1 0°T
e _ 1 9 oy, 1 ol
V= T T vTsimede \MM%6) T rrainzoagr 41

or

1o (1,281") + Lo (sin@aT) + 1T
r2 or or/  r2sin6 00 00/  ¥2sin® 0 02
(2.14b)

where the coordinates are as described in Fig. 2.5.
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Spherical coordinates

Figure 2.5 Cylindrical and spherical coordinate schemes.
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2.2 Solutions of the heat diffusion equation

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat diffusion equation. In every
case, we first calculate T (7, t). Then, if we want the heat flux as well, we
differentiate T to get g from Fourier’s law.

The heat diffusion equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do a
lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat diffusion equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is lin-
ear and therefore not too formidable, in any case. Our procedure can be
laid out, step by step, with the help of the following example.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases g W/m3. The outside surfaces are
kept at the ambient temperature, so T, = T». What is the maximum
internal temperature?

SOLUTION.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T. In the example,
T will probably vary only along the thin dimension, which we will
call the x-direction. (We should want to know that the edges are
insulated and that L was much smaller than the width or height.
If they are, this assumption should be quite good.) Since the in-
terior temperature will reach its maximum value when the pro-
cess becomes steady, we write T = T (x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

0°T 9°T  0°T 4 _

10T
2t 5252 T xor
0x oy 0z 'k x ot
[ —
=0, since = 0, since
T+ T(yorz) steady

Therefore, since T = T(x only), the equation reduces to the
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ordinary d.e.

a’T 4
dx?  k

Step 3. Obtain the general solution of the d.e. (This is usually the

easiest step.) We simply integrate the d.e. twice and get

N
T = 2kX +Ci1x +

Step 4. Write the “side conditions” on the d.e.—the initial and bound-

ary conditions. This is always the hardest part for the beginning
students; it is the part that most seriously tests their physical
or “practical” understanding of problems.

Normally, we have to make two specifications of temperature
on each position coordinate and one on the time coordinate to
get rid of the constants of integration in the general solution.
(These matters are discussed at greater length in Chapter 4.)

In this case there are two boundary conditions:
T(x=0)=T, and T(x=L)=Ty

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial con-

ditions and solve for the constants. This process gets very com-
plicated in the transient and multidimensional cases. Fourier
series methods are typically needed to solve the problem. How-
ever, the steady one-dimensional problems are usually easy. In
the example, by evaluating at x = 0 and x = L, we get:

Tw=-0+0+Co SO Co =Ty

__ar’ _alL

Ty = ok +Ci1L+ SO C = ok
—

=Ty
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Dimensionless 0.15 |—
temperature, _ T¢_ -Tw ~ 1
« 2 - 8
qL"/k
TTw 0.10 —
aL?/k
!
0.05 — Eqn (2.19)
0 -
0 1.0
0.5

Dimensionless postition, x/L

Figure 2.6 Temperature distribution in the setting concrete
slab Example 2.1.

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

__ 4.2 4
T = ka +2ka+Tw

This should be put in neat dimensionless form:
T-Ty 1 X_(X)2
qr2/k = 2 [L L (215

Step 7. Play with the solution—Ilook it over—see what it has to tell you.
Make any checks you can think of to be sure it is correct. In this
case we plot eqgn. (2.15) in Fig. 2.6. The resulting temperature
distribution is parabolic and, as we would expect, symmetrical.
It satisfies the boundary conditions at the wall and maximizes
in the center. By nondimensionalizing the result, we have suc-
ceeded in representing all situations with a simple curve. That
is highly desirable when the calculations are not simple, as they
are here. (Notice that T actually depends on five different things,
yet the solution is a single curve on a two-coordinate graph.)
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Finally, we check to see if the heat flux at the wall is correct:

oT _ |4 _‘LL] _ 4L
X_o‘k[kx 2k Jxeo 2

= —ki
Awall dx
Thus, half of the total energy generated in the slab comes out
of the front side, as we would expect. The solution appears to
be correct.

Step 8. If the temperature field is now correctly established, you can,
if you wish, calculate the heat flux at any point in the body by
substituting T (¥, t) back into Fourier’s law. We did this already,
in Step 7, to check our solution. |

We shall run through additional examples in this section and the fol-

lowing one. In the process, we shall develop some important results for
future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

SOLUTION. These can be found quickly by following the steps set
down in Example 2.1:

A

7
T — -
/ T=T1".rl LR
L
T
/ i -
A
S S S S x o} L X
(o] L
Problem Solution

Figure 2.7 Heat conduction in a slab (Example 2.2).
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Step 1. T = T(x) for steady x-direction heat flow

2
Step 2. % = 0, the steady 1-D heat equation with no g
Step 3. T = C1x + (o is the general solution of that equation

Step4. T(x =0) =T, and T(x = L) = T» are the b.c.s

T, - T

Step 5. 1 =0+ C2,s0Co =Ty;and Tr = C1L + Cp, so Cy = T

T - T T-T
2 lx'o 1 X

r %o T

Step 6. T =T +

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.

__4r_ 4 _@)
Step 8. q = kdx = kdx (Tl i X
so that qzkAL—T |

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law. Thus, if we rearrange it:

AT - E
Q= m is like I= E
where L/kA assumes the role of a thermal resistance, to which we give
the symbol R;. R; has the dimensions of (K/W). Figure 2.8 shows how we
can represent heat flow through the slab with a diagram that is perfectly
analogous to an electric circuit.

2.3 Thermal resistance and the electrical analogy
Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogies in other kinds of
physical behavior, of which the electrical analogy is only one. These anal-
ogous processes provide us with a good deal of guidance in the solution
of heat transfer problems And, conversely, heat conduction analyses can
often be adapted to describe those processes.
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Figure 2.8 Ohm’s law analogy to conduction through a slab.

Let us first consider Ohm’s law in three dimensions:

T

1 =J=-yVVv (2.16)

flux of electrical charge =

I amperes is the vectorial electrical current, A is an area normal to the
current vector, J is the flux of current or current density, y is the electrical
conductivity in cm/ohm-cm?, and V is the voltage.

To apply egn. (2.16) to a one-dimensional current flow, as pictured in
Fig. 2.9, we write eqn. (2.16) as
av. AV

=Y (2.17)

J= Y ax TV

but AV is the applied voltage, E, and the resistance of the wire is R =
L/yA. Then, since I = J A, eqn. (2.17) becomes

I== 2.18
R ( )
which is the familiar, but restrictive, one-dimensional statement of Ohm’s
law.
Fick’s law is another analogous relation. It states that during mass
diffusion, the flux, ji, of a dilute component, 1, into a second fluid, 2, is
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B ] ]
aS

Figure 2.9 The one-dimensional flow of 1|I
current.

proportional to the gradient of its mass concentration, m;. Thus
Jj1=-pD12Vm; (2.19)

where the constant D> is the binary diffusion coefficient.

Example 2.3

Air fills a thin tube 1 m in length. There is a small water leak at one
end where the water vapor concentration builds to a mass fraction of
0.01. A desiccator maintains the concentration at zero on the other
side. What is the steady flux of water from one side to the other if
D1 is 2.84 x 107> m?/s and p = 1.18 kg/m3?

SOLUTION.

- ) .
ke (2.84 X 1()5HSI> (O-Ol kg H>O/kg m1xture>

I =1.18—
Jwater vapor m3 1m

~335% 107 &
me--S
m

Contact resistance

One place in which the usefulness of the electrical resistance analogy be-
comes immediately apparent is at the interface of two conducting media.
No two solid surfaces will ever form perfect thermal contact when they
are pressed together. Since some roughness is always present, a typical
plane of contact will always include tiny air gaps as shown in Fig. 2.10
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Figure 2.10 Heat transfer through the contact plane between
two solid surfaces.

(which is drawn with a highly exaggerated vertical scale). Heat transfer
follows two paths through such an interface. Conduction through points
of solid-to-solid contact is very effective, but conduction through the gas-
filled interstices, which have low thermal conductivity, can be very poor.
Thermal radiation across the gaps is also inefficient.

We treat the contact surface by placing an interfacial conductance, h.,
in series with the conducting materials on either side. The coefficient h,
is similar to a heat transfer coefficient and has the same units, W/m2K. If
AT is the temperature difference across an interface of area A, then Q =
Ah AT. Tt follows that Q = AT/R; for a contact resistance R; = 1/(h.A)
in K/W.

The interfacial conductance, h., depends on the following factors:

e The surface finish and cleanliness of the contacting solids.
e The materials that are in contact.

e The pressure with which the surfaces are forced together. This may
vary over the surface, for example, in the vicinity of a bolt.

e The substance (or lack of it) in the interstitial spaces. Conductive
shims or fillers can raise the interfacial conductance.

e The temperature at the contact plane.

The influence of contact pressure is usually amodest one up to around
10 atm in most metals. Beyond that, increasing plastic deformation of
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Table 2.1 Some typical interfacial conductances for normal
surface finishes and moderate contact pressures (about 1 to 10

atm). Air gaps not evacuated unless so indicated.

Situation he. (W/m?K)
Iron/aluminum (70 atm pressure)

Copper/copper 10,000 — 25,000
Aluminum/aluminum 2,200 -12,000
Graphite/metals 3,000 — 6,000
Ceramic/metals 1,500 - 8,500
Stainless steel/stainless steel 2,000 - 3,700
Ceramic/ceramic 500 - 3,000
Stainless steel/stainless steel 200 - 1,100

(evacuated interstices)

Aluminum/aluminum (low pressure 100 — 400

and evacuated interstices)

the local contact points causes h. to increase more dramatically at high
pressure. Table 2.1 gives typical values of contact resistances which bear
out most of the preceding points. These values have been adapted from
[2.1, Chpt. 3] and [2.2]. Theories of contact resistance are discussed in

[2.3] and [2.4].

Example 2.4

Heat flows through two stainless steel slabs (k = 18 W/m-K) that are
pressed together. The slab area is A = 1 m?. How thick must the

slabs be for contact resistance to be negligible?
SOLUTION. With reference to Fig. 2.11, we can write
L 1 L 1 < L 1 L

Riow =34 * hea " ka ~ 4

Since h. is about 3,000 W/m?K,

2L
— must be >

18 3000 = 0.00033

18 . T 18

Thus, L must be large compared to 18(0.00033)/2 = 0.003 m if contact

resistance is to be ignored. If L = 3 cm, the error is about 10%.
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T

—»ILILwa

Figure 2.11 Conduction through two

Configuration Thermal circuit unit-area slabs with a contact resistance.

Resistances for cylinders and for convection

As we continue developing our method of solving one-dimensional heat
conduction problems, we find that other avenues of heat flow may also be
expressed as thermal resistances, and introduced into the solutions that
we obtain. We also find that, once the heat conduction equation has been
solved, the results themselves may be used as new thermal resistances.

Example 2.5 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.12.

SOLUTION.

Stepl. T=T(r)

Step 2.
10 ( 8T) 1 02T 02°T g 10T
——lr=+ S=—+=— + - ——
ror \' or r2o¢p2  0z2 k x0T
—_—
=0, since T # T(¢p,z) =0 =0, since steady

T
Step 3. Integrate once: T?)Tf = (1; integrate again: T = CiIn7r +

Step4. T(r=7ry)) =Tiand T(r =7,) =T,
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- A
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Configuration Temperature profile

Figure 2.12 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.5).

Step 5.
oo Ti=To _ AT
Li=Gln+ G 5 " nGi/ry) —  Inlre/m)
To = CiIn7y + Co Co=T; + m(ﬁT/r)lnri
olti
AT
Step6. T =T, — m(lﬂr —In7;) or

T-T; In(r/r)
To-Ti In(ve/7y)

(2.20)

Step 7. The solution is plotted in Fig. 2.12. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when 7; /7, is close
to 1. In this case:

In(r/r;) = T 1= Yo
i (£
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and
Yo —71i

In(ry /1) = ——
1

Thus egn. (2.20) becomes

T—Ti _ Y —7i
To — T; _7’0_7’1'

which is a simple linear profile. This is the same solution that
we would get in a plane wall.

Step 8. At any station, 7:

oT  IAT 1

dradial = _kar = +m;

So the heat flux falls off inversely with radius. That is reason-
able, since the same heat flow must pass through an increasingly
large surface as the radius increases. Let us see if this is the case
for a cylinder of length I:

2TTKIAT
W)=Q2nmrl)g=——— = f(r 2.21
Q (W) = ( )a n(ry/77) Sfr) (2.21)
Finally, we again recognize Ohm'’s law in this result and write
the thermal resistance for a cylinder:

In(ry/7i) (K
R = =51k ( )

W (2.22)

This can be compared with the resistance of a plane wall:

L K
Revan = 34 (w)

Both resistances are inversely proportional to k, but each re-
flects a different geometry. |

In the preceding examples, the boundary conditions were all the same
—a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.
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Bi= 10
"o T-T,
T Too— T,
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,i Bi=1.0
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Bi=0.1
0
(o] 1 2

Configuration r/r;

Solution

Figure 2.13 Heat transfer through a cylinder with a convective
boundary condition (Example 2.6).

Example 2.6 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylin-
der in Example 2.5 provides thermal resistance between the cylinder
and an environment at T = T, as shown in Fig. 2.13. Find the tem-
perature distribution and heat flux in this case.

SOLUTION.
Step 1 through 3. These are the same as in Example 2.5.

Step 4. The first boundary condition is T(» = r;) = T;. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

Aconvection = qconduction
at the wall

or

E(T - Too)y:yo = _k al
or =7,

Step 5. From the first boundary condition we obtain T; = C;In7; +
(. It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it in
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detail:

E[(Cl Inr + Cp) — Too]

r=ro

0
= -k [E(CI lnr+C2)] (2.23)

r=7y

A common error is to substitute T = T, on the lefthand side
instead of substituting the entire general solution. That will do
no good, because T, is not an accessible piece of information.
Equation (2.23) reduces to:

kCy

o

When we combine this with the result of the first boundary con-
dition to eliminate Co:

Ti_Too TOO_Tl

1= " k/(hro) + In(re/17) T 1/Bi+ In(r,/7;)

Then

To — T;

C=Ti= 1g +In(ro/77)

Inv;

Step 6.

T = 1/Bi+ n(rgjry) M/ + Ti

This can be rearranged in fully dimensionless form:

T-T; In(r/7;)

To —T; 1/Bi+In(r,/7i) (2.24)

Step 7. Let us fix a value of 7,/r;—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included
in Fig. 2.13. Some very important things show up in this plot.
When Bi > 1, the solution reduces to the solution given in Ex-
ample 2.5. It is as though the convective resistance to heat flow
were not there. That is exactly what we anticipated in Section 1.3
for large Bi. When Bi < 1, the opposite is true: (T —T;)/(Te —T;)
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Figure 2.14 Thermal circuit with two A

resistances.

1 ol
AT - Rtcond = 21K

A~

Rtcony = 1/2Mron

remains on the order of Bi, and internal conduction can be ne-
glected. How big is big and how small is small? We do not
really have to specify exactly. But in this case Bi < 0.1 signals
constancy of temperature inside the cylinder with about +3%.
Bi > 20 means that we can neglect convection with about 5%
error.

oT T, -Tw 1

or  1/Bi+In(r,/ri) v

This can be written in terms of Q (W) = gragial (2777 1) for a cylin-
der of length

Step 8. qradial = —k

Q i Tl - Too _ Tl - Too
-1 In(vo/7i) Rty + Regyng
— + con
h2mr,l 21kl

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.14.

The presence of convection on the outside surface of the cylinder
causes a new thermal resistance of the form

1

Ry = — 2.26
tCOIlV hA ( )

where A is the surface area over which convection occurs. |

Example 2.7 Critical Radius of Insulation

Aninteresting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia to prevent the steam from condensing
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Rtcondensation ~ Nedligible
AN
thu = negligible
AT=
n ro/ri
Rtcond = 27k
mag
AAN Figure 2.15 Thermal circuit for an
Rtcony = 1/2Mroh insulated tube.

too rapidly. The steam is under pressure and stays at 150°C. The
copper is thin and highly conductive—obviously a tiny resistance in
series with the convective and insulation resistances, as we see in
Fig. 2.15. The condensation of steam inside the tube also offers very
little resistance.3 But on the outside, a heat transfer coefficient of h
= 20 W/m?K offers fairly high resistance. It turns out that insulation
can actually improve heat transfer in this case.
The two significant resistances, for a cylinder of unit length (I =
1 m), are
In(ro /7))  In(vo /i)
Riwa = “5mi = 2m0.070) W
1 1

R e 211(20) 7, /

Figure 2.16 is a plot of these resistances and their sum. A very inter-
esting thing occurs here. R, falls off rapidly when 7, is increased,
because the outside area is increasing. Accordingly, the total resis-
tance passes through a minimum in this case. Will it always do so?
To find out, we differentiate eqn. (2.25), again setting [ = 1 m:

dQ (Tl —Tw) 1 1
= 2 (‘ o T ) =
o ( L, lnm/n)) 2mrgh - 2TTKY,

2Tt h 21Tk

When we solve this for the value of ¥, = 7rit at which Q is maximum
and the total resistance is minimum, we obtain

_ Ercrit
k
In the present example, adding insulation will increase heat loss in-

Bi=1 (2.27)

3Condensation heat transfer is discussed in Chapter 8. It turns out that h is generally
enormous during condensation so that Rt jensation 1S TNY.
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4 — lerit = 1.48 1

R +R
\ tcond tconvL
~ Rt
S conv
-~ -
-~
\\\ _ -
-~ ”
ot ol
- —— ——

Thermal resistance, R; (K/W)
N

1.0 1.5 2.0 2.5

2.32
Radius ratio, ry/f;

Figure 2.16 The critical radius of insulation (Example 2.7),
written for a cylinder of unit length (I = 1 m).

stead of reducing it, until ¥¢it = k/h = 0.0037 m or ¥eit/7; = 1.48.
Indeed, insulation will not even start to do any good until v, /¥; = 2.32
or v, = 0.0058 m. We call v« the critical radius of insulation. |

There is an interesting catch here. For most cylinders, ¥qit < ; and
the critical radius idiosyncrasy is of no concern. If our steam line had a 1
cm outside diameter, the critical radius difficulty would not have arisen.
When cooling smaller diameter cylinders, such as electrical wiring, the
critical radius must be considered, but one need not worry about it in
the design of most large process equipment.

Resistance for thermal radiation
We saw in Chapter 1 that the net radiation exchanged by two objects is

given by eqn. (1.34):

Qnet = A1 T1-2 O'(Tf - T;) (1.34)

When T; and T» are close, we can approximate this equation using a
radiation heat transfer coefficient, hyyq. Specifically, suppose that the
temperature difference, AT = T; — T», is small compared to the mean
temperature, Ty, = (T1 + T>)/2. Then we can make the following expan-
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sion and approximation:

Qnet = A1F1-2 O'<Tf - Tf)
= A1 Fr 0 (T} + TH)(TE - T%)
=AiFi20 (T{+T5) (Ti+Tp) (T - T2)

Y

=2T2 + (AT)%2/2 =2Tp =AT

= Ay (40T}, Fi12) AT (2.28)
_Y—J
=Nrad

where the last step assumes that (AT)?/2 < 2T2, or (AT/T)?/4 < 1.
Thus, we have identified the radiation heat transfer coefficient

Qnet = Al hradAT >
for (AT/Tm) /4 <1 (2.29)
Nrad = 40 Ty F1-2

This leads us immediately to the introduction of a radiation thermal re-
sistance, analogous to that for convection:

1

Riy=-—1—
frad A 1 hrad

(2.30)

For the special case of a small object (1) in a much larger environment
(2), the transfer factor is given by eqn. (1.35) as F1-» = €1, so that

Niad = 40T €1 (2.31)

If the small object is black, its emittance is €1 = 1 and haq is maximized.
For a black object radiating near room temperature, say Ty, = 300 K,

Nrag = 4(5.67 x 1078)(300)3 = 6 W/m2K

This value is of approximately the same size as h for natural convection
into a gas at such temperatures. Thus, the heat transfer by thermal radi-
ation and natural convection into gases are similar. Both effects must be
taken into account. In forced convection in gases, on the other hand, h
might well be larger than h;,q by an order of magnitude or more, so that
thermal radiation can be neglected.



76 Heat conduction, thermal resistance, and the overall heat transfer coefficient §2.3

Example 2.8

An electrical resistor dissipating 0.1 W has been mounted well away
from other components in an electronical cabinet. It is cylindrical
with a 3.6 mm O.D. and a length of 10 mm. If the air in the cabinet
is at 35°C and at rest, and the resistor has h = 13 W/m?2K for natural
convection and € = 0.9, what is the resistor’s temperature? Assume
that the electrical leads are configured so that little heat is conducted
into them.

SOLUTION. The resistor may be treated as a small object in a large
isothermal environment. To compute h;aq, let us estimate the resis-
tor’s temperature as 50°C. Then

Tm = (35 +50)/2 = 43°C =316 K
SO
Niad = 40T e = 4(5.67 x 1078)(316)3(0.9) = 6.44 W/m?K

Heat is lost by natural convection and thermal radiation acting in
parallel. To find the equivalent thermal resistance, we combine the
two parallel resistances as follows:
1 1 1
= +
Rtequiv Rtrad thonv

= Ahpag + Ah = A(hyag + 1)

Thus,

1

R v — . =_
equiv A(hrad + h )

A calculation shows A = 133 mm? = 1.33 x 10~ m? for the resistor
surface. Thus, the equivalent thermal resistance is

1

Ry . = = 8K
teaus = (133 % 10 4) (13 + 6.44) _ 5008 /W
Since
B Tresistor — Tair
Q Rtequiv
We find

Tresistor = Tair + Q - Rieqyy = 35 + (0.1)(386.8) = 73.68 °C
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Tresistor

tconv= F]A
—> QCOI’]V
Tresistor Tair
o—— +—o0
1
Rt
rad hradA
L A/ \N\— Figure 2.17 An electrical resistor cooled

by convection and radiation.

We guessed a resistor temperature of 50°C in finding h;,q. Re-
computing with this higher temperature, we have T, = 327 K and
Nraa = 7.17 W/m2K. If we repeat the rest of the calculation, we get a
new value Tresistor = 72.3°C. Further iteration is not needed.

Since the use of h;,q is an approximation, we should check its
applicability:

2 . 2
1 (E) _1 (M) = 0.00325 < 1
Tm

4 4 327
In this case, the approximation is a very good one. |
Example 2.9

Suppose that power to the resistor in Example 2.8 is turned off. How
long does it take to cool? The resistor has k = 10 W/m-K, p =
2000 kg/m?3, and ¢, = 700 J/kg-K.

SOLUTION. The lumped capacity model, eqn. (1.22), may be appli-
cable. To find out, we check the resistor’s Biot number, noting that
the parallel convection and radiation processes have an effective heat
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transfer coefficient hegt = h + hrag = 18.44 W/m?2K. Then,

Bi — hell’;fro _ (18.44)(?(.)0036/2) —0.0033 < 1

so eqgn. (1.22) can be used to describe the cooling process. The time
constant is

_ pcpV (2000)(700)77(0.010)(0.0036)% /4
" RetA (18.44)(1.33 x 10-4)

From eqn. (1.22) with Ty = 72.3°C

=58.1s

Tresistor = 35.0 + (72.3 — 35.0)e " t/°81 °C

Ninety-five percent of the total temperature drop has occured when
t=3T =174 s. |

2.4 Overall heat transfer coefficient, U
Definition
We often want to transfer heat through composite resistances, as shown

in Fig. 2.18. It is very convenient to have a number, U, that works like
this*:

Q =UAAT (2.32)

This number, called the overall heat transfer coefficient, is defined largely
by the system, and in many cases it proves to be insensitive to the oper-
ating conditions of the system. In Example 2.6, for example, we can use
the value Q given by eqn. (2.25) to get

QW) _ 1
[21t7,1 (M2)] AT (°C) Yo In(vy/77)
k

We have based U on the outside area, A, = 217%,1, in this case. We might
instead have based it on inside area, A; = 271r7;l, and obtained

1
ri  riln(re /i)

= +

hr, k

4This U must not be confused with internal energy. The two terms should always
be distinct in context.

(W/m?K) (2.33)

+

S =

U:

(2.34)
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Rl Rz Rl’l
e AAA AN —— — — = e AAA—
— Ill Figure 2.18 A thermal circuit with many
AT resistances.

It is therefore important to remember which area an overall heat trans-
fer coefficient is based on. It is particularly important that A and U be
consistent when we write Q = UA AT.

Example 2.10

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.19. Note that the flame convects heat to the thin aluminum.
The heat is then conducted through the aluminum and finally con-
vected by boiling into the water.

SOLUTION. We need not worry about deciding which area to base A
on because the area normal to the heat flux vector does not change.
We simply write the heat flow

Q- AT _ THame — Tboiling water
"SR 1 L 1

=+ — + =

hA kaA  hpA

and apply the definition of U

Q 1
U_AAT_ 1 L 1
h  ka hy

Let us see what typical numbers would look like in this example: h
might be around 200 W/m?2K; L/ka; might be 0.001 m/(160 W/m-K)
or 1/160,000 W/m?K; and hy, is quite large— perhaps about 5000
W/m?K. Thus:

1
1 1 1

200 © 160,000 5000

U ~ =192.1 W/m2K [ ]
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Physical configuration
Teakettie

Thermal circuit

{ |I
o h
AT

Figure 2.19 Heat transfer through the bottom of a tea kettle.

It is clear that the first resistance is dominant, as is shown in Fig. 2.19.
Notice that in such cases

UA — 1/Rpg (2.35)

where A is any area (inside or outside) in the thermal circuit.

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall egn. (2.35) and see Problem 2.12.]

Example 2.11

A wall consists of alternating layers of pine and sawdust, as shown
in Fig. 2.20). The sheathes on the outside have negligible resistance
and h is known on the sides. Compute Q and U for the wall.

SOLUTION. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.” The

SFor this approximation to be exact, the resistances must be equal. If they differ
radically, the problem must be treated as two-dimensional.
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Sawdust
T ) ==
% e~ T
. ., . . (T )
" RIS r
‘ st e E
A | = =
— T —
T ¥
e et A
. s
— Y
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AT=T_-T
- | —— R r
Configuration Thermal circuit

Figure 2.20 Heat transfer through a composite wall.

total thermal resistance of the circuit is

1
Rttotal = thonv + 1 1 + thonv
+
(Rtpine Rtsawdust )
Thus
Q_ _ AT _ T001 - Too,/
Rttotal 1 1 1
=+ + =
RA " (kpAp KsAs\ T RA
L L
and
Q 1
= = |
u AAT 2 1
=+
L A L A

The approach illustrated in this example is very widely used in calcu-
lating U values for the walls and roofs houses and buildings. The thermal
resistances of each structural element — insulation, studs, siding, doors,
windows, etc. — are combined to calculate U or Ry, which is then used
together with weather data to estimate heating and cooling loads [2.5].
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Table 2.2 Typical ranges or magnitudes of U

Heat Exchange Configuration U (W/m?2K)

Walls and roofs dwellings with a 24 km/h
outdoor wind:

¢ Insulated roofs 0.3-2

¢ Finished masonry walls 0.5-6

e Frame walls 0.3-5

e Uninsulated roofs 1.2-4
Single-pane windows ~ 6t
Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60-550
Steam or water to oil 60-340
Liquids in coils immersed in liquids 110-2,000
Feedwater heaters 110-8,500
Air condensers 350-780
Steam-jacketed, agitated vessels 500-1,900
Shell-and-tube ammonia condensers 800-1,400
Steam condensers with 25°C water 1,500-5,000
Condensing steam to high-pressure 1,500-10,000

boiling water

T Main heat loss is by infiltration.

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U shown in Table 2.2, which
were assembled from a variety of technical sources. If the exchanger
is intended to improve heat exchange, U will generally be much greater
than 40 W/m?2K. If it is intended to impede heat flow, it will be less than
10 W/m?K—anywhere down to almost perfect insulation. You should
have some numerical concept of relative values of U, so we recommend
that you scrutinize the numbers in Table 2.2. Some things worth bearing
in mind are:

o The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.
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e Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.10.)

In fact:
¢ For a high U, all resistances in the exchanger must be low.

o The highly conducting liquids, such as water and liquid metals, give
high values of h and U.

Fouling resistance

Figure 2.21 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the re-
sistance offered by these buildups, we must include an additional, highly
empirical resistance when we calculate U. Thus, for the pipe shown in
Fig. 2.21,

1
U‘older ipe =
basedpog A 1 N viIn(ro/ry)  riln(ry/vi) ti

h; Kinsul kpipe Yoho

Pipe

Insutation
Scale

To

New pipe Older pipe
(after some use)

Figure 2.21 The fouling of a pipe.
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Table 2.3 Some typical fouling resistances for a unit area.

Fluid and Situation

Fouling Resistance
Ry (m2K/W)

Distilled water

Seawater

Treated boiler feedwater
Clean river or lake water

0.0001
0.0001 - 0.0004
0.0001 - 0.0002
0.0002 - 0.0006

About the worst waters used in heat < 0.0020
exchangers

No. 6 fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002 — 0.0009
Steam, non-oil-bearing 0.0001
Steam, oil-bearing (e.g., turbine 0.0003

exhaust)
Most stable gases
Flue gases
Refrigerant vapors (oil-bearing)

0.0002 - 0.0004
0.0010 - 0.0020
0.0040

where Ry is a fouling resistance for a unit area of pipe (in m2K,/W). And

clearly

1 1

Rr= 2.36
f Uold ( )

UHEW

Some typical values of Ry are given in Table 2.3. These values have
been adapted from [2.6] and [2.7]. Notice that fouling has the effect of
adding a resistance in series on the order of 10~% m2K/W. It is rather like
another heat transfer coefficient, Ef, on the order of 10,000 W/m?K in
series with the other resistances in the exchanger.

The tabulated values of Ry are given to only one significant figure be-
cause they are very approximate. Clearly, exact values would have to be
referred to specific heat exchanger configurations, to particular fluids, to
fluid velocities, to operating temperatures, and to age [2.8, 2.9]. The re-
sistance generally drops with increased velocity and increases with tem-
perature and age. The values given in the table are based on reasonable
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maintenance and the use of conventional shell-and-tube heat exchangers.
With misuse, a given heat exchanger can yield much higher values of Ry.

Notice too, that if U < 1,000 W/m2K, fouling will be unimportant
because it will introduce a negligibly small resistance in series. Thus,
in a water-to-water heat exchanger, for which U is on the order of 2000
W/m?K, fouling might be important; but in a finned-tube heat exchanger
with hot gas in the tubes and cold gas passing across the fins on them, U
might be around 200 W/m?K, and fouling will be usually be insignificant.

Example 2.12

You have unpainted aluminum siding on your house and the engineer
has based a heat loss calculation on U = 5 W/m?K. You discover that
air pollution levels are such that Ry is 0.0005 m2K/W on the siding.
Should the engineer redesign the siding?

SOLUTION. From eqn. (2.36) we get

1 1

Ucorrected Uuncorrected

+ Ry = 0.2000 + 0.0005 m*K/W
Therefore, fouling is entirely irrelevant to domestic heat loads. |

Example 2.13

Since the engineer did not fail you in the preceding calculation, you
entrust him with the installation of a heat exchanger at your plant.
He installs a water-cooled steam condenser with U = 4000 W/m?K.
You discover that he used water-side fouling resistance for distilled
water but that the water flowing in the tubes is not clear at all. How
did he do this time?

SOLUTION. Equation (2.36) and Table 2.3 give

1 1
Ucorrected 4000
= 0.00085 to 0.00225 m°K/W

+ (0.0006 to 0.0020)

Thus, U is reduced from 4,000 to between 444 and 1,176 W/m?2K.
Fouling is crucial in this case, and the engineer was in serious error.
|
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2.5

Summary

Four things have been done in this chapter:

The heat diffusion equation has been established. A method has
been established for solving it in simple problems, and some im-
portant results have been presented. (We say much more about
solving the heat diffusion equation in Part II of this book.)

We have explored the electric analogy to steady heat flow, paying
special attention to the concept of thermal resistance. We exploited
the analogy to solve heat transfer problems in the same way we
solve electrical circuit problems.

The overall heat transfer coefficient has been defined, and we have
seen how to build it up out of component resistances.

Some practical problems encountered in the evaluation of overall
heat transfer coefficients have been discussed.

Three very important things have not been considered in Chapter 2:

In all evaluations of U that involve values of h, we have taken these
values as given information. In any real situation, we must deter-
mine correct values of h for the specific situation. Part III deals with
such determinations.

When fluids flow through heat exchangers, they give up or gain
energy. Thus, the driving temperature difference varies through
the exchanger. (Problem 2.14 asks you to consider this difficulty
in its simplest form.) Accordingly, the design of an exchanger is
complicated. We deal with this problem in Chapter 3.

The heat transfer coefficients themselves vary with position inside
many types of heat exchangers, causing U to be position-dependent.

Problems

2.1 Prove that if k varies linearly with T in a slab, and if heat trans-

fer is one-dimensional and steady, then g may be evaluated
precisely using k evaluated at the mean temperature in the
slab.
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2.2

2.3

2.4

2.5

2.6

Invent a numerical method for calculating the steady heat flux
through a plane wall when k(T) is an arbitrary function. Use
the method to predict g in an iron slab 1 cm thick if the tem-
perature varies from —100°C on the left to 400°C on the right.
How far would you have erred if you had taken kaverage =
(Kieft + Kright) /27

The steady heat flux at one side of a slab is a known value g,.
The thermal conductivity varies with temperature in the slab,
and the variation can be expressed with a power series as

i=n '
k= > AT
i=0

(a) Start with eqn. (2.10) and derive an equation that relates
T to position in the slab, x. (b) Calculate the heat flux at any
position in the wall from this expression using Fourier’s law.
Is the resulting g a function of x?

Combine Fick’s law with the principle of conservation of mass
(of the dilute species) in such a way as to eliminate j;, and
obtain a second-order differential equation in m ;. Discuss the
importance and the use of the result.

Solve for the temperature distribution in a thick-walled pipe
if the bulk interior temperature and the exterior air tempera-
ture, Tw,, and Tw,, are known. The interior and the exterior
heat transfer coefficients are h; and h,, respectively. Follow
the method in Example 2.1 and put your result in the dimen-
sionless form:

T - Tooi
Teo;, — Too,

1

= fn (Bi;, Bio, v /7i, v /7i)

Put the boundary conditions from Problem 2.5 into dimension-
less form so that the Biot numbers appear in them. Let the Biot
numbers approach infinity. This should get you back to the
boundary conditions for Example 2.5. Therefore, the solution
that you obtain in Problem 2.5 should reduce to the solution of
Example 2.5 when the Biot numbers approach infinity. Show
that this is the case.
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Figure 2.22 Configuration for

Problem 2.8.

2.7

2.8

2.9

2.10

— h=20

m2°c

(Too=25"C)

Write an accurate explanation of the idea of critical radius of
insulation that your kid brother or sister, who is still in grade
school, could understand. (If you do not have an available kid,
borrow one to see if your explanation really works.)

The slab shown in Fig. 2.22 is embedded on five sides in insu-
lating materials. The sixth side is exposed to an ambient tem-
perature through a heat transfer coefficient. Heat is generated
in the slab at the rate of 1.0 kW/m3 The thermal conductivity
of the slab is 0.2 W/m-K. (a) Solve for the temperature distri-
bution in the slab, noting any assumptions you must make. Be
careful to clearly identify the boundary conditions. (b) Evalu-
ate T at the front and back faces of the slab. (c) Show that your
solution gives the expected heat fluxes at the back and front
faces.

Consider the composite wall shown in Fig. 2.23. The concrete
and brick sections are of equal thickness. Determine T, To,
q, and the percentage of g that flows through the brick. To
do this, approximate the heat flow as one-dimensional. Draw
the thermal circuit for the wall and identify all four resistances
before you begin.

Compute Q and U for Example 2.11 if the wall is 0.3 m thick.
Five (each) pine and sawdust layers are 5 and 8 cm thick, re-
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2.11

2.12

2.13

2.14

spectively; and the heat transfer coefficients are 10 on the left
and 18 on the right. Tw, = 30°C and Tw, = 10°C.

Compute U for the slab in Example 1.2.

Consider the tea kettle in Example 2.10. Suppose that the ket-
tle holds 1 kg of water (about 1 liter) and that the flame im-
pinges on 0.02 m? of the bottom. (a) Find out how fast the wa-
ter temperature is increasing when it reaches its boiling point,
and calculate the temperature of the bottom of the kettle im-
mediately below the water if the gases from the flame are at
500°C when they touch the bottom of the kettle. Assume that
the heat capacitance of the aluminum kettle is negligible. (b)
There is an old parlor trick in which one puts a paper cup of
water over an open flame and boils the water without burning
the paper (see Experiment 2.1). Explain this using an electrical
analogy. [(a): AT /dt = 0.37°C/s.]

Copper plates 2 mm and 3 mm in thickness are processed
rather lightly together. Non-oil-bearing steam condenses un-
der pressure at Tgar = 200°C on one side (h = 12,000 W/m?2K)
and methanol boils under pressure at 130°Con the other (h =
9000 W/m?K). Estimate U and q initially and after extended
service. List the relevant thermal resistances in order of de-
creasing importance and suggest whether or not any of them
can be ignored.

0.5 kg/s of air at 20°C moves along a channel that is 1 m from
wall to wall. One wall of the channel is a heat exchange surface

j2,5 cmr‘ 7.5cm —»t- S5cm «»]
Concrete cinder
O Q
370°C °e block o 66°C
N £ o . £ |7
2 k=0.76W/m-"C £z
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o
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Figure 2.23 Configuration for
9 Problem 2.9.
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2.15

2.16

2.17

2.18

2.19

2.20

2.21

(U = 300 W/m?K) with steam condensing at 120°C on its back.
Determine (a) q at the entrance; (b) the rate of increase of tem-
perature of the fluid with x at the entrance; (c) the temperature
and heat flux 2 m downstream. [(c): Tom = 89.7°C.]

An isothermal sphere 3 cm in diameter is kept at 80°C in a
large clay region. The temperature of the clay far from the
sphere is kept at 10°C. How much heat must be supplied to
the sphere to maintain its temperature if kcjay = 1.28 W/m-K?
(Hint: You must solve the boundary value problem not in the
sphere but in the clay surrounding it.) [Q = 16.9 W.]

Is it possible to increase the heat transfer from a convectively
cooled isothermal sphere by adding insulation? Explain fully.

A wall consists of layers of metals and plastic with heat trans-
fer coefficients on either side. U is 255 W/m?K and the overall
temperature difference is 200°C. One layer in the wall is stain-
less steel (k = 18 W/m-K) 3 mm thick. What is AT across the
stainless steel?

A 1% carbon-steel sphere 20 cm in diameter is kept at 250°C on
the outside. It has an 8 cm diameter cavity containing boiling
water (Rinside 1S very high) which is vented to the atmosphere.
What is Q through the shell?

A slab is insulated on one side and exposed to a surround-
ing temperature, T, through a heat transfer coefficient on the
other. There is nonuniform heat generation in the slab such
that g =[A (W/m*)][x (m)], where x = 0 at the insulated wall
and x = L at the cooled wall. Derive the temperature distribu-
tion in the slab.

800 W/m? of heat is generated within a 10 cm diameter nickel-
steel sphere for which k = 10 W/m-K. The environment is at
20°C and there is a natural convection heat transfer coefficient
of 10 W/m2K around the outside of the sphere. What is its
center temperature at the steady state? [21.37°C.]

An outside pipe is insulated and we measure its temperature
with a thermocouple. The pipe serves as an electrical resis-
tance heater, and g is known from resistance and current mea-
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2,22

2.23

2.24

2.25

2.26

surements. The inside of the pipe is cooled by the flow of lig-
uid with a known bulk temperature. Evaluate the heat transfer
coefficient, h, in terms of known information. The pipe dimen-
sions and properties are known. [Hint: Remember that h is not
known and we cannot use a boundary condition of the third
kind at the inner wall to get T(r).]

Consider the hot water heater in Problem 1.11. Suppose that it
is insulated with 2 cm of a material for which k = 0.12 W/m-K,
and suppose that h = 16 W/m?2K. Find (a) the time constant
T for the tank, neglecting the casing and insulation; (b) the
initial rate of cooling in °C/h; (c) the time required for the water
to cool from its initial temperature of 75°C to 40°C; (d) the
percentage of additional heat loss that would result if an outer
casing for the insulation were held on by eight steel rods, 1 cm
in diameter, between the inner and outer casings.

A slab of thickness L is subjected to a constant heat flux, g1, on
the left side. The right-hand side if cooled convectively by an
environment at T. (a) Develop a dimensionless equation for
the temperature of the slab. (b) Present dimensionless equa-
tion for the left- and right-hand wall temperatures as well. (c)
If the wall is firebrick, 10 cm thick, g1 is 400 W/m?, h = 20
W/m?K, and T. = 20°C, compute the lefthand and righthand
temperatures.

Heat flows steadily through a stainless steel wall of thickness
L¢s =0.06 m, with a variable thermal conductivity of kgs=1.67 +
0.0143 T(°C). Itis partially insulated on the right side with glass
wool of thickness Lgw = 0.1 m, with a thermal conductivity
of kgw = 0.04. The temperature on the left-hand side of the
stainless stell is 400°Cand on the right-hand side if the glass
wool is 100°C. Evaluate g and T;.

Rework Problem 1.29 with a heat transfer coefficient, h, = 40
W/m?2K on the outside (i.e., on the cold side).

A scientist proposes an experiment for the space shuttle in
which he provides underwater illumination in a large tank of
water at 20°C, using a 3 cm diameter spherical light bulb. What
is the maximum wattage of the bulb in zero gravity that will
not boil the water?
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2.27

2.28

2.29

2.30

2.31

A cylindrical shell is made of two layers- an inner one with
inner radius = r; and outer radius = 7. and an outer one with
inner radius = 7. and outer radius = r,. There is a contact
resistance, h., between the shells. The materials are different,
and Th (v = ;) = Tjand To (v = 7v,) = T,. Derive an expression
for the inner temperature of the outer shell (T3,).

A 1 kW commercial electric heating rod, 8 mm in diameter and
0.3 m long, is to be used in a highly corrosive gaseous environ-
ment. Therefore, it has to be provided with a cylindrical sheath
of fireclay. The gas flows by at 120°C, and h is 230 W/m?K out-
side the sheath. The surface of the heating rod cannot exceed
800°C. Set the maximum sheath thickness and the outer tem-
perature of the fireclay. [Hint: use heat flux and temperature
boundary conditions to get the temperature distribution. Then
use the additional convective boundary condition to obtain the
sheath thickness.]

A very small diameter, electrically insulated heating wire runs
down the center of a 7.5 mm diameter rod of type 304 stain-
less steel. The outside is cooled by natural convection (h = 6.7
W/m?K) in room air at 22°C. If the wire releases 12 W/m, plot
Troq VS. radial position in the rod and give the outside temper-
ature of the rod. (Stop and consider carefully the boundary
conditions for this problem.)

A contact resistance experiment involves pressing two slabs of
different materials together, putting a known heat flux through
them, and measuring the outside temperatures of each slab.
Write the general expression for h. in terms of known quanti-
ties. Then calculate h. if the slabs are 2 cm thick copper and
1.5 cm thick aluminum, if g is 30,000 W/m?, and if the two
temperatures are 15°C and 22.1°C.

A student working heat transfer problems late at night needs
a cup of hot cocoa to stay awake. She puts milk in a pan on an
electric stove and seeks to heat it as rapidly as she can, without
burning the milk, by turning the stove on high and stirring the
milk continuously. Explain how this works using an analogous
electric circuit. Is it possible to bring the entire bulk of the milk
up to the burn temperature without burning part of it?
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2.32

2.33

2.34

2.35

2.36

2.37

2.38

A small, spherical hot air balloon, 10 m in diameter, weighs
130 kg with a small gondola and one passenger. How much
fuel must be consumed (in kJ/h) if it is to hover at low altitude
in still 27°C air? (Moutside = 215 W/m?K, as the result of natural
convection.)

A slab of mild steel, 4 cm thick, is held at 1,000°C on the back
side. The front side is approximately black and radiates to
black surroundings at 100°C. What is the temperature of the
front side?

With reference to Fig. 2.3, develop an empirical equation for
k(T) for ammonia vapor. Then imagine a hot surface at Ty,
parallel with a cool horizontal surface at a distance H below it.
Develop equations for T(x) and q. Compute g if T,, = 350°C,
Tcool = —5°C, and H = 0.15 m.

A type 316 stainless steel pipe has a 6 cm inside diameter and
an 8 cm outside diameter with a 2 mm layer of 85% magnesia
insulation around it. Liquid at 112°C flows inside, so h; = 346
W/m?2K. The air around the pipe is at 20°C, and ho = 6 W/m?K.
Calculate U based on the inside area. Sketch the equivalent
electrical circuit, showing all known temperatures. Discuss
the results.

Two highly reflecting, horizontal plates are spaced 0.0005 m
apart. The upper one is kept at 1000°C and the lower one at
200°C. There is air in between. Neglect radiation and compute
the heat flux and the midpoint temperature in the air. Use a
power-law fit of the form k = a(T°C)P to represent the air data
in Table A.6.

A 0.1 m thick slab with k = 3.4 W/m-K is held at 100°C on the
left side. The right side is cooled with air at 20°C through a
heat transfer coefficient, and h = (5.1 W/m?2(K)~5/%) (Tywan —
T~)'/4. Find q and Twan on the right.

Heat is generated at 54,000 W/m3 in a 0.16 m diameter sphere.
The sphere is cooled by natural convection with fluid at 0°C,
and h = [2 + 6(Tsurface — Too) /4] W/m?K, ksphere = 9 W/m-K.
Find the surface temperature and center temperature of the
sphere.
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2.39

2.40

241

2.42

Layers of equal thickness of spruce and pitch pine are lami-
nated to make an insulating material. How should the lamina-
tions be oriented in a temperature gradient to achieve the best
effect?

The resistances of a thick cylindrical layer of insulation must
be increased. Will Q be lowered more by a small increase of
the outside diameter or by the same decrease in the inside
diameter?

You are in charge of energy conservation at your plant. There
is a 300 m run of 6 in. O.D. pipe carrying steam at 250°C. The
company requires that any insulation must pay for itself in
one year. The thermal resistances are such that the surface of
the pipe will stay close to 250°C in air at 25°C when h = 10
W/m?2K. Calculate the annual energy savings in kW-h that will
result if a 1 in layer of 85% magnesia insulation is added. If
energy is worth 6 cents per kW-h and insulation costs $75 per
installed linear meter, will the insulation pay for itself in one
year?

An exterior wall of a wood-frame house is typically composed,
from outside to inside, of a layer of wooden siding, a layer
glass fiber insulation, and a layer of gypsum wall board. Stan-
dard glass fiber insulation has a thickness of 3.5 inch and a
conductivity of 0.038 W/m-K. Gypsum wall board is normally
0.50 inch thick with a conductivity of 0.17 W/m-K, and the sid-
ing can be assumed to be 1.0 inch thick with a conductivity of
0.10 W/m-K.

a. Find the overall thermal resistance of such a wall (in K/W)
if it has an area of 400 ft2.

b. Convection and radiation processes on the inside and out-
side of the wall introduce more thermal resistance. As-
suming that the effective outside heat transfer coefficient
(accounting for both convection and radiation) is h, = 20
W/m?K and that for the inside is h; = 10 W/m?K, deter-
mine the total thermal resistance for heat loss from the
indoors to the outdoors. Also obtain an overall heat trans-
fer coefficient, U, in W/m?2K.
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2.44

c. If the interior temperature is 20°C and the outdoor tem-
perature is —5°C, find the heat loss through the wall in
watts and the heat flux in W/m?.

d. Which of the five thermal resistances is dominant?

We found that the thermal resistance of a cylinder was Rt =
(1/21kl) In(v, /7). If v, = i + 6, show that the thermal resis-
tance of a thin-walled cylinder (6 < 7;) can be approximated
by that for a slab of thickness 6. Thus, R¢,,, = /(kA;), where
A; = 271l is the inside surface area of the cylinder. How
much error is introduced by this approximation if 6/7; = 0.2?
[Hint: Use a Taylor series.]

A Gardon gage measures a radiation heat flux by detecting a
temperature difference [2.10]. The gage consists of a circular
constantan membrane of radius R, thickness t, and thermal
conductivity k¢ which is joined to a heavy copper heat sink
at its edges. When a radiant heat flux graq is absorbed by the
membrane, heat flows from the interior of the membrane to
the copper heat sink at the edge, creating a radial tempera-
ture gradient. Copper leads are welded to the center of the
membrane and to the copper heat sink, making two copper-
constantan thermocouple junctions. These junctions measure
the temperature difference AT between the center of the mem-
brane, T(r = 0), and the edge of the membrane, T(+ = R).

The following approximations can be made:
. The membrane surface has been blackened so that it ab-
sorbs all radiation that falls on it

. The radiant heat flux is much larger than the heat lost
from the membrane by convection or re-radiation. Thus,
all absorbed radiant heat is removed from the membrane
by conduction to the copper heat sink, and other loses
can be ignored

o The gage operates in steady state
. The membrane is thin enough (t < R) that the tempera-
ture in it varies only with 7, i.e., T = T(r) only.

Answer the following questions.
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a. For afixed copper heat sink temperature, T (¥ = R), sketch
the shape of the temperature distribution in the mem-
brane, T(v), for two arbitrary heat radiant fluxes grad;
and grad2, where grad; > qrado-

b. Find the relationship between the radiant heat flux, grad,
and the temperature difference obtained from the ther-
mocouples, AT. HINT: Treat the absorbed radiant heat
flux as if it were a volumetric heat source of magnitude
drad/t (W/m3).

You have a 12 oz. (375 mL) can of soda at room temperature
(70°F) that you would like to cool to 45°F before drinking. You
rest the can on its side on the plastic rods of the refrigerator
shelf. The can is 2.5 inches in diameter and 5 inches long.
The can’s emissivity is € = 0.4 and the natural convection heat
transfer coefficient around it is a function of the temperature
difference between the can and the air: h = 2 AT!/# for AT in
kelvin.

Assume that thermal interactions with the refrigerator shelf
are negligible and that buoyancy currents inside the can will
keep the soda well mixed.

a. Estimate how long it will take to cool the can in the refrig-
erator compartment, which is at 40°F.

b. Estimate how long it will take to cool the can in the freezer
compartment, which is at 5°F.

c. Are your answers for parts 1 and 2 the same? If not, what
is the main reason that they are different?
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3. Heat exchanger design

The great object to be effected in the boilers of these engines is, to keep
a small quantity of water at an excessive temperature, by means of a
small amount of fuel kept in the most active state of combustion...No
contrivance can be less adapted for the attainment of this end than one or
two large tubes traversing the boiler, as in the earliest locomotive engines.
The Steam Engine Familiarly Explained and lllustrated,

Dionysus Lardner, 1836

3.1 Function and configuration of heat exchangers

The archetypical problem that any heat exchanger solves is that of get-
ting energy from one fluid mass to another, as we see in Fig. 3.1. A simple
or composite wall of some kind divides the two flows and provides an
element of thermal resistance between them. There is an exception to
this configuration in the direct-contact form of heat exchanger. Figure
3.2 shows one such arrangement in which steam is bubbled into water.
The steam condenses and the water is heated at the same time. In other
arrangements, immiscible fluids might contact each other or nonconden-
sible gases might be bubbled through liquids.

This discussion will be restricted to heat exchangers with a dividing
wall between the two fluids. There is an enormous variety of such config-
urations, but most commercial exchangers reduce to one of three basic
types. Figure 3.3 shows these types in schematic form. They are:

e The simple parallel or counterflow configuration. These arrange-
ments are versatile. Figure 3.4 shows how the counterflow arrange-
ment is bent around in a so-called Heliflow compact heat exchanger
configuration.

e The shell-and-tube configuration. Figure 3.5 shows the U-tubes of
a two-tube-pass, one-shell-pass exchanger being installed in the

99
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Figure 3.1 Heat exchange.

supporting baffles. The shell is yet to be added. Most of the re-
ally large heat exchangers are of the shell-and-tube form.

e The cross-flow configuration. Figure 3.6 shows typical cross-flow
units. In Fig. 3.6a and c, both flows are unmixed. Each flow must
stay in a prescribed path through the exchanger and is not allowed
to “mix” to the right or left. Figure 3.6b shows a typical plate-fin
cross-flow element. Here the flows are also unmixed.

Figure 3.7, taken from the standards of the Tubular Exchanger Manu-
facturer’s Association (TEMA) [3.1], shows four typical single-shell-pass
heat exchangers and establishes nomenclature for such units.

These pictures also show some of the complications that arise in
translating simple concepts into hardware. Figure 3.7 shows an exchan-
ger with a single tube pass. Although the shell flow is baffled so that it
crisscrosses the tubes, it still proceeds from the hot to cold (or cold to
hot) end of the shell. Therefore, it is like a simple parallel (or counter-
flow) unit. The kettle reboiler in Fig. 3.7d involves a divided shell-pass
flow configuration over two tube passes (from left to right and back to the
“channel header”). In this case, the isothermal shell flow could be flowing
in any direction—it makes no difference to the tube flow. Therefore, this
exchanger is also equivalent to either the simple parallel or counterflow
configuration.
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Figure 3.2 A direct-contact heat exchanger.

Notice that a salient feature of shell-and-tube exchangers is the pres-
ence of baffles. Baffles serve to direct the flow normal to the tubes. We
find in Part III that heat transfer from a tube to a flowing fluid is usually
better when the flow moves across the tube than when the flow moves
along the tube. This augmentation of heat transfer gives the complicated
shell-and-tube exchanger an advantage over the simpler single-pass par-
allel and counterflow exchangers.

However, baffles bring with them a variety of problems. The flow pat-
terns are very complicated and almost defy analysis. A good deal of the
shell-side fluid might unpredictably leak through the baffle holes in the
axial direction, or it might bypass the baffles near the wall. In certain
shell-flow configurations, unanticipated vibrational modes of the tubes
might be excited. Many of the cross-flow configurations also baffle the
fluid so as to move it across a tube bundle. The plate-and-fin configura-
tion (Fig. 3.6b) is such a cross-flow heat exchanger.

In all of these heat exchanger arrangements, it becomes clear that a
dramatic investment of human ingenuity is directed towards the task of
augmenting the heat transfer from one flow to another. The variations
are endless, as you will quickly see if you try Experiment 3.1.

Experiment 3.1

Carry a notebook with you for a day and mark down every heat ex-
changer you encounter in home, university, or automobile. Classify each
according to type and note any special augmentation features.

The analysis of heat exchangers first becomes complicated when we
account for the fact that two flow streams change one another’s temper-
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Internal tubing tubing

Plan view showing flow patterns

Figure 3.4 Heliflow compact counterflow heat exchanger.
(Photograph coutesy of Graham Manufacturing Co., Inc.,
Batavia, New York.)

ature. It is to the problem of predicting an appropriate mean tempera-
ture difference that we address ourselves in Section 3.2. Section 3.3 then
presents a strategy to use when this mean cannot be determined initially.

3.2 Evaluation of the mean temperature difference
in a heat exchanger

Logarithmic mean temperature difference (LMTD)

To begin with, we take U to be a constant value. This is fairly reasonable
in compact single-phase heat exchangers. In larger exchangers, particu-
larly in shell-and-tube configurations and large condensers, U is apt to
vary with position in the exchanger and/or with local temperature. But
in situations in which U is fairly constant, we can deal with the varying
temperatures of the fluid streams by writing the overall heat transfer in
terms of a mean temperature difference between the two fluid streams:

Q = UA ATmean (3-1)

Shell
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Above and left: A very large feed-water preheater. Tubes
are shown withdrawn from the shell on the left. Inset
above shows baffles before tubes are inserted. (Photos
courtesy of Southwest Engineering Co., Subsidiary of
Cronus Industries, Inc., Los Angeles, Calif.)

Below: Small "Swinglok'' exchanger with tube-bundle
removed from shell. (Photo courtesy of Graham
Manufacturing Co. Inc., Batavia, New York.)

Figure 3.5 Typical commercial one-shell-pass, two-tube-pass
heat exchangers.
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a) A 1980 Chevette radiator. Cross-flow
exchanger with neither flow mixed. Vertical
tubes cannot be seen.

c) The basic 1 ft. x1 ft. x 2 ft. module for
a waste heat recuperator. It is a plate-fin,
gas-to-air cross-flow heat exchanger with
neither flow mixed.

b)

A section of an automotive air conditioning
condenser. The flow through the horizontal
wavy fins is allowed to mix with itself while
the two-pass flow through the U-tubes
remains unmixed

Figure 3.6 Several commercial cross-flow heat exchangers.
(Photographs courtesy of Harrison Radiator Division, General

Motors Corporation.)
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Figure 3.7 Four typical heat exchanger configurations (contin-
ued on next page). (Drawings courtesy of the Tubular Exchan-
ger Manufacturers’ Association.)
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d) One split shell-pass, two tube-pass, kettle type of exchanger

Figure 3.7 Continued

Our problem then reduces to finding the appropriate mean temperature
difference that will make this equation true. Let us do this for the simple
parallel and counterflow configurations, as sketched in Fig. 3.8.

The temperature of both streams is plotted in Fig. 3.8 for both single-
pass arrangements—the parallel and counterflow configurations—as a
function of the length of travel (or area passed over). Notice that, in the
parallel-flow configuration, temperatures tend to change more rapidly
with position and less length is required. But the counterflow arrange-
ment achieves generally more complete heat exchange from one flow to
the other.

Figure 3.9 shows another variation on the single-pass configuration.
This is a condenser in which one stream flows through with its tempera-
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Figure 3.8 The temperature variation through single-pass
heat exchangers.

ture changing, but the other simply condenses at uniform temperature.
This arrangement has some special characteristics, which we point out
shortly.

The determination of ATmean for such arrangements proceeds as fol-
lows: the differential heat transfer within either arrangement (see Fig. 3.8)
is

dQ = UAT dA = —(mcp)p dTy = =(1ircy)c dTe (3.2)
where the subscripts h and ¢ denote the hot and cold streams, respec-
tively; the upper and lower signs are for the parallel and counterflow
cases, respectively; and dT denotes a change from left to right in the

exchanger. We give symbols to the total heat capacities of the hot and
cold streams:

Thus, for either heat exchanger, ¥C;dT; = C.dT.. This equation can
be integrated from the lefthand side, where T}, = Ty, and T, = T, for
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Figure 3.9 The temperature distribution through a condenser.

parallel flow or Ty, = Ty,,, and T, = T, for counterflow, to some arbitrary
point inside the exchanger. The temperatures inside are thus:

parallel flow: Ty = Ty, — Ce (Te = Teyy)) = Thy, — o

Cn Ch

C Q (3.4)
counterflow: Ty = Th, — =< (Tege = Te) =Ty, — ~

Cn Cn

where Q is the total heat transfer from the entrance to the point of inter-
est. Equations (3.4) can be solved for the local temperature differences:

C C
ATyaraltel = T — Te = Ty, — (1 n Ch) T

C C
ATeounter = Th — Te = Tpy, — (1 - Ch) A

(3.5)
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Substitution of these in dQ = C.dT, = UAT dA yields

UdA B aT,
Ce parallel [_ (1 + &) T. + &an + Thin]
Cn Cn (3.6)
UdA B aT, '
Ce counter_ [_ (1_&)7" _&T + T ]
Ch c Ch Cout hin
Equations (3.6) can be integrated across the exchanger:
A T,
U cout ch
—dA = 3.7
I B e 57
If U and C, can be treated as constant, this integration gives
[ &) Ce
— (1 + Ch TCOut + Ch Tcin + Thin U A CC
parallel: In C C = 1+ C,
— 1+—C>T.+—CT.+T. ¢ h
i ( Ch Cin Ch Cin hin
(1-S) g, - &
- (1 - Ch Teon Ch Teoy + Thyy UA C,
counter: In C C = 1- o
1= i) T. —=°T +T c h
| ( Ch Cin Ch Cout hin
(3.8)

If U were variable, the integration leading from eqn. (3.7) to eqns. (3.8)
is where its variability would have to be considered. Any such variability
of U can complicate eqns. (3.8) terribly. Presuming that eqns. (3.8) are
valid, we can simplify them with the help of the definitions of AT, and
ATy, given in Fig. 3.8:

(1+ Cc/Cp) (T, — Tt )+ATb] (1 1 )
llel: 1 in out - A=+ —
paralle n[ AT, U C + o
AT, < 1 1 )
counter: In =-UA|—=—-—
(=1 + Cc/Cp)(Tey, — Tegy) + ATq Cc Cp
(3.9)
Conservation of energy (Q. = Qy) requires that
T — Ty,
g __ ‘hout hin (3.10)

C”l - Tcout - TCin




§3.2 Evaluation of the mean temperature difference in a heat exchanger

Then eqgn. (3.9) and eqn. (3.10) give

AT, ATy
parallel: In (Tein = Teow) + (Thoy = Thyy) +AT)p
ATy,
AT, 11
n(3) -1 (E )

ATy, C. Gy

AT, AT 1 1

counter: n ATy — ATa + ATy "\ AT, v Cc Cp
(3.11)

Finally, we write 1/Cc = (T¢oy — T¢yn)/Q and 1/Cp = (T, — Th,,)/Q on
the right-hand side of either of eqns. (3.11) and get for either parallel or
counterflow,

AT, — AT, )

In(AT,/ATy) (3.12)

0 -ua(

The appropriate ATyean for use in eqn. (3.11) is thus the logarithmic mean
temperature difference (LMTD):

AT — AT,

ATmean =LMTD = 11’1<Ma>
N

(3.13)

Example 3.1

The idea of a logarithmic mean difference is not new to us. We have
already encountered it in Chapter 2. Suppose that we had asked,
“What mean radius of pipe would have allowed us to compute the
conduction through the wall of a pipe as though it were a slab of
thickness L = v, — 7;?” (see Fig. 3.10). To answer this, we compare

_ AT Vmean )
Q= kA—L = 2TkIAT <1’o o
with egn. (2.21):

1

=2mMkIAT ——
Q In(ro/77)
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Cross-section of a The equivalent slab
cylinder

Figure 3.10 Calculation of the mean radius for heat conduc-
tion through a pipe.

It follows that

Yo — ¥ L .
= 2 ' _]ogarithmic mean radius [ |

mean = 19 (o /170)

Example 3.2

Suppose that the temperature difference on either end of a heat ex-
changer, AT,, and AT}, are equal. Clearly, the effective AT must equal
AT, and ATy, in this case. Does the LMTD reduce to this value?

SOLUTION. If we substitute AT; = AT}, in eqn. (3.13), we get

ATy, — AT,
b b _0_ indeterminate

IMID= ———— =
In(ATy,/ATy) 0

Therefore it is necessary to use L'Hospital’s rule:

5
% (AT, - AT )'
e ATa= ATy, _ 9AT, a P AT =aT,
AT,—AT, In(AT,/ATy) 0 ! <ATa>
n
AT, \AT, )|y _am,
_ <#> = AT, = AT
“\1/aT, T oraT o

AT,=AT,
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It follows that the LMTD reduces to the intuitively obvious result in
the limit. |

Example 3.3

Water enters the tubes of a small single-pass heat exchanger at 20°C
and leaves at 40°C. On the shell side, 25 kg/min of steam condenses at
60°C. Calculate the overall heat transfer coefficient and the required
flow rate of water if the area of the exchanger is 12 m?. (The latent
heat, hy,, is 2358.7 kJ/kg at 60°C.)

SOLUTION.

. 25(2358.7)
Q = Mcondensate * hfg 60°C 60 =983 kJ/s

and with reference to Fig. 3.9, we can calculate the LMTD without
naming the exchanger “parallel” or “counterflow”, since the conden-
sate temperature is constant.

(60 —20) — (60 — 40)

LMTD = - (60 — 20) =28.85K
60 — 40
Then
3 Q
U= A(LMTD)
~983(1000) 5
= 12(28.85) - 2839 W/m“K
and
My,0 = Q__ 983,000 _ 11.78 kg/s [ ]

cpAT — 4174(20)

Extended use of the LMTD

Limitations. There are two basic limitations on the use of an LMTD.
The first is that it is restricted to the single-pass parallel and counter-
flow configurations. This restriction can be overcome by adjusting the
LMTD for other configurations—a matter that we take up in the following
subsection.



114 Heat exchanger design §3.2
|
Combustion
gases (Small U
region)
'—
g
3
B
® 1
% .
€ {Large U Region)
@
- e(“ea\e
\Y
; =) q@"o‘
Flow boiling
Length| or area

Dryout

Figure 3.11 A typical case of a heat exchanger in which U
varies dramatically.

The second limitation—our use of a constant value of U— is more
serious. The value of U must be negligibly dependent on T to complete
the integration of eqn. (3.7). Even if U # fn(T), the changing flow con-
figuration and the variation of temperature can still give rise to serious
variations of U within a given heat exchanger. Figure 3.11 shows a typ-
ical situation in which the variation of U within a heat exchanger might
be great. In this case, the mechanism of heat exchange on the water side
is completely altered when the liquid is finally boiled away. If U were
uniform in each portion of the heat exchanger, then we could treat it as
two different exchangers in series.

However, the more common difficulty that we face is that of design-
ing heat exchangers in which U varies continuously with position within
it. This problem is most severe in large industrial shell-and-tube config-
urations! (see, e.g., Fig. 3.5 or Fig. 3.12) and less serious in compact heat
exchangers with less surface area. If U depends on the location, analyses
such as we have just completed [eqn. (3.1) to egn. (3.13)] must be done
using an average U defined as f{;‘ UdA/A.

1 Actual heat exchangers can have areas well in excess of 10,000 m?. Large power
plant condensers and other large exchangers are often remarkably big pieces of equip-
ment.



Figure 3.12 The heat exchange surface for a steam genera-
tor. This PFT-type integral-furnace boiler, with a surface area
of 4560 m?, is not particularly large. About 88% of the area
is in the furnace tubing and 12% is in the boiler (Photograph
courtesy of Babcock and Wilcox Co.)
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LMTD correction factor, F. Suppose that we have a heat exchanger in
which U can reasonably be taken constant, but one that involves such
configurational complications as multiple passes and/or cross-flow. In
such cases it is necessary to rederive the appropriate mean temperature
difference in the same way as we derived the LMTD. Each configuration
must be analyzed separately and the results are generally more compli-
cated than eqn. (3.13).

This task was undertaken on an ad hoc basis during the early twen-
tieth century. In 1940, Bowman, Mueller and Nagle [3.2] organized such
calculations for the common range of heat exchanger configurations. In
each case they wrote

Ttout — Ttin TSin B TSout
)
. TSin - Ttin ) \Ttout - Ttin‘

Y g

p R

Q = UA(IMTD) - F

(3.14)

where T; and T, are temperatures of tube and shell flows, respectively.
The factor F is an LMTD correction that varies from unity to zero, depend-
ing on conditions. The dimensionless groups P and R have the following
physical significance:

e P is the relative influence of the overall temperature difference
(T, — Tt;,) on the tube flow temperature. It must obviously be
less than unity.

e R, according to eqn. (3.10), equals the heat capacity ratio C;/Cs.

o If one flow remains at constant temperature (as, for example, in
Fig. 3.9), then either P or R will equal zero. In this case the simple
LMTD will be the correct ATmean and F must go to unity.

The factor F is defined in such a way that the LMTD should always be
calculated for the equivalent counterflow single-pass exchanger with the
same hot and cold temperatures. This is explained in Fig. 3.13.

Bowman et al. [3.2] summarized all the equations for F, in various con-
figurations, that had been dervied by 1940. They presented them graphi-
cally in not-very-accurate figures that have been widely copied. The TEMA
[3.1] version of these curves has been recalculated for shell-and-tube heat
exchangers, and it is more accurate. We include two of these curves in
Fig. 3.14(a) and Fig. 3.14(b). TEMA presents many additional curves for
more complex shell-and-tube configurations. Figures 3.14(c) and 3.14(d)
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T,

+ in
In complicated heat exchangers such Tt

as the 2 shell-pass, 6 tube-pass exchanger CEither Ts or Ty can be Th
shown:

oT =
mean F(LMTD)

-F (Thin ~TCout) — (Thout -Tcin) C

Th:
Q h

in _Tcout
T —Te.
hout ™ 'Cin

Ttout

T Tsout
Thin

Tcout
In other words, the LMTD is written as

though the complicated exchanger is the
single-pass counterflow exchanger shown: = Tcin

Length or area

Figure 3.13 The basis of the LMTD in a multipass exchanger,
prior to correction.

are the Bowman et al. curves for the simplest cross-flow configurations.
Gardner and Taborek [3.3] redeveloped Fig. 3.14(c) over a different range
of parameters. They also showed how Fig. 3.14(a) and Fig. 3.14(b) must
be modified if the number of baffles in a tube-in-shell heat exchanger is
large enough to make it behave like a series of cross-flow exchangers.

We have simplified Figs. 3.14(a) through 3.14(d) by including curves
only for R < 1. Shamsundar [3.4] noted that for R > 1, one may obtain F
using a simple reciprocal rule. He showed that so long as a heat exchan-
ger has a uniform heat transfer coefficient and the fluid properties are
constant,

F(P,R) = F(PR,1/R) (3.15)

Thus, if R is greater than unity, one need only evaluate F using PR in
place of P and 1/R in place of R.

Example 3.4

5.795 kg/s of oil flows through the shell side of a two-shell pass, four-
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Figure 3.14 LMTD correction factors, F, for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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Figure 3.14 LMTD correction factors, F, for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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tube-pass oil cooler. The oil enters at 181°C and leaves at 38°C. Water
flows in the tubes, entering at 32°C and leaving at 49°C. In addition,
Cpoy = 2282 J/kg-K and U = 416 W/m?K. Find how much area the
heat exchanger must have.

SOLUTION.
LMTD = (Thm B TCout) B (Thout - TCin)
In (Thin — TCout)
Thout - TCin
(181 —49) — (38 - 32)
= 1n(181_49> — 40.76 K
38 — 32
181 — 38 49 — 32
—m—8412 P—m—0114

Since R > 1, we enter Fig. 3.14(b) using P = 8.412(0.114) = 0.959 and
R =1/8.412 = 0.119 and obtain F = 0.92.2 It follows that:

Q = UAF(LMTD)
5.795(2282)(181 — 38) = 416(A)(0.92)(40.76)
A=121.2 m? [ ]

3.3 Heat exchanger effectiveness

We are now in a position to predict the performance of an exchanger once
we know its configuration and the imposed differences. Unfortunately,
we do not often know that much about a system before the design is
complete.

Often we begin with information such as is shown in Fig. 3.15. If
we sought to calculate Q in such a case, we would have to do so by
guessing an exit temperature such as to make Qp = Q. = CRAT, =
C:AT;. Then we could calculate Q from UA(LMTD) or UAF(LMTD) and
check it against Qj. The answers would differ, so we would have to guess
new exit temperatures and try again.

Such problems can be greatly simplified with the help of the so-called
effectiveness-NTU method. This method was first developed in full detail

2Notice that, for a 1 shell-pass exchanger, these R and P lines do not quite intersect
[see Fig. 3.14(a)]. Therefore, one could not obtain these temperatures with any single-
shell exchanger.
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)

U=known
Thin ﬁnown
~
~
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Tequ™1— 1+ o
hout™
Cc=known = — Tein

Length or area (known)

Figure 3.15 A design problem in which the LMTD cannot be
calculated a priori.

by Kays and London [3.5] in 1955, in a book titled Compact Heat Exchang-
ers. We should take particular note of the title. It is with compact heat
exchangers that the present method can reasonably be used, since the
overall heat transfer coefficient is far more likely to remain fairly uni-
form.

The heat exchanger effectiveness is defined as

Cn(Thy, — Thow) — Co(Tegy — Teyn)

= (3.16)
Cmin ( Thin - Tcin ) Cmin ( Thin - Tcin )

&

where Cpin is the smaller of C. and Cj. The effectiveness can be inter-
preted as

actual heat transferred

maximum heat that could possibly be
transferred from one stream to the other

E =

It follows that
Q = €Cnin(Thy, — T¢yy) (3.17)

A second definition that we will need was originally made by EK.W.
Nusselt, whom we meet again in Part IIl. This is the number of transfer
units (NTU):

NTU = ua (3.18)

Cmin
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This dimensionless group can be viewed as a comparison of the heat
capacity of the heat exchanger, expressed in W/K, with the heat capacity
of the flow.

We can immediately reduce the parallel-flow result from eqgn. (3.9) to
the following equation, based on these definitions:

Crnin Cmin) |: ( Cc ) Cmin ]
- + NTU=In|-(1+ — +1 1
(CC c, JNU=In TYAN (3.19)

We solve this for ¢ and, regardless of whether Cpi, is associated with the
hot or cold flow, obtain for the parallel single-pass heat exchanger:

1 + Cmin/Cmax

The corresponding expression for the counterflow case is

_ 1 —exp[—(1 = Cmin/Cmax)NTU]
1 — (Cmin/Cmax) eXp[—(1 — Cmin/Cmax)NTU]

Equations (3.20) and (3.21) are given in graphical form in Fig. 3.16.
Similar calculations give the effectiveness for the other heat exchanger
configurations (see [3.5] and Problem 3.38), and we include some of the
resulting effectiveness plots in Fig. 3.17. To see how the effectiveness
can conveniently be used to complete a design, consider the following
two examples.

Cmin N1y only) (3.20)

E =
Cmax

£ (3.21)

Example 3.5

Consider the following parallel-flow heat exchanger specification:
cold flow enters at 40°C: C. = 20,000 W/K
hot flow enters at 150°C: Cp = 10,000 W/K
A=30m? U =500W/m’K.
Determine the heat transfer and the exit temperatures.

SOLUTION. In this case we do not know the exit temperatures, so it
is not possible to calculate the LMTD. Instead, we can go either to the
parallel-flow effectiveness chart in Fig. 3.16 or to eqn. (3.20), using

UA  500(30)

TU = = =
N U Cmin 10,000

1.5

@:0_5

Cmax
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Figure 3.16 The effectiveness of parallel and counterflow heat
exchangers. (Data provided by A.D. Krauss.)
and we obtain ¢ = 0.596. Now from eqn. (3.17), we find that

Q = & Conin(Thy, — Tey) = 0.596(10,000) (110)
= 655,600 W = 655.6 kW

Finally, from energy balances such as are expressed in eqn. (3.4), we

get
Q 655,600 .
Thow = Thin — 7 = 150 — ——=———= = 84.44
hou = Thin = - = 150 =557 = 84.44°C
. Q 655,600 __,
Teow = Toy + C. ~ 40 + 20.000 72.78°C (]
Example 3.6

Suppose that we had the same kind of exchanger as we considered
in Example 3.5, but that the area remained unspecified as a design
variable. Then calculate the area that would bring the hot flow out at
90°C.

SOLUTION. Once the exit cold fluid temperature is known, the prob-
lem can be solved with equal ease by either the LMTD or the effective-
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c.) One sheli pass, two tube pass exchanger.

(Can also be used for 4, 6, 8, 10, 12 tube
passes with a maximum error in €, of 0.040
at Cmin/Cmax = 1 and large NTU.)

d.) Two shell pass 4 tube pass exchanger.
(Can also be used for 4, 8, 8, ... tube
passes with reasonable accuracy if
there are equal numbers of tube
passes in each shell pass.)

Figure 3.17 The effectiveness of some other heat exchanger
configurations. (Data provided by A.D. Krauss.)
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ness approach.
Ch 1 o
Teow = Tei + C—(Thin = Thyy) = 40 + 5(150 -90) =70°C
C

Then, using the effectiveness method,
. Cn(Thy, — Thy,) ~ 10,000(150 —90)
"~ Cmin(Thy, — Te,y)  10,000(150 — 40)
so from Fig. 3.16 we read NTU ~1.15 = UA/Cpin. Thus
10,000(1.15)
500
We could also have calculated the LMTD:

(150 — 40) — (90 — 70) _
LMTD = In(110/20) =52.79K

so from Q = UA(LMTD), we obtain

A 10,000(150 — 90)
B 500(52.79)

The answers differ by 1%, which reflects graph reading inaccuracy. i

= 0.5455

A= = 23.00 m?

=22.73 m?

When the temperature of either fluid in a heat exchanger is uniform,
the problem of analyzing heat transfer is greatly simplified. We have
already noted that no F-correction is needed to adjust the LMTD in this
case. The reason is that when only one fluid changes in temperature, the
configuration of the exchanger becomes irrelevant. Any such exchanger
is equivalent to a single fluid stream flowing through an isothermal pipe.>

Since all heat exchangers are equivalent in this case, it follows that
the equation for the effectiveness in any configuration must reduce to
the same common expression as Cmax approaches infinity. The volumet-
ric heat capacity rate might approach infinity because the flow rate or
specific heat is very large, or it might be infinite because the flow is ab-
sorbing or giving up latent heat (as in Fig. 3.9). The limiting effectiveness
expression can also be derived directly from energy-balance considera-
tions (see Problem 3.11), but we obtain it here by letting Cpax — o in
either eqn. (3.20) or egn. (3.21). The result is

lim e6=1-¢NU (3.22)

max — ®

3We make use of this notion in Section 7.4, when we analyze heat convection in pipes
and tubes.
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Eqgn. (3.22) defines the curve for Cpin/Cmax = 0 in all six of the effective-
ness graphs in Fig. 3.16 and Fig. 3.17.

3.4 Heat exchanger design

The preceding sections provided means for designing heat exchangers
that generally work well in the design of smaller exchangers—typically,
the kind of compact cross-flow exchanger used in transportation equip-
ment. Larger shell-and-tube exchangers pose two kinds of difficulty in
relation to U. The first is the variation of U through the exchanger, which
we have already discussed. The second difficulty is that convective heat
transfer coefficients are very hard to predict for the complicated flows
that move through a baffled shell.

We shall achieve considerable success in using analysis to predict h’s
for various convective flows in Part IIl. The determination of h in a baffled
shell remains a problem that cannot be solved analytically. Instead, it
is normally computed with the help of empirical correlations or with
the aid of large commercial computer programs that include relevant
experimental correlations. The problem of predicting h when the flow is
boiling or condensing is even more complicated. A great deal of research
is at present aimed at perfecting such empirical predictions.

Apart from predicting heat transfer, a host of additional considera-
tions must be addressed in designing heat exchangers. The primary ones
are the minimization of pumping power and the minimization of fixed
costs.

The pumping power calculation, which we do not treat here in any
detail, is based on the principles discussed in a first course on fluid me-
chanics. It generally takes the following form for each stream of fluid
through the heat exchanger:

pumping power = (m s D ke ) = p .
A (3.23)
m
= 2 w)
p

g) (Ap N/m? ) _ mAp (N-m)

where 71 is the mass flow rate of the stream, Ap the pressure drop of

the stream as it passes through the exchanger, and p the fluid density.
Determining the pressure drop can be relatively straightforward in a

single-pass pipe-in-tube heat exchanger or extremely difficulty in, say, a
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shell-and-tube exchanger. The pressure drop in a straight run of pipe,
for example, is given by

L ) pugv

Dn) 2 (3.24)

Av=f(
where L is the length of pipe, Dy, is the hydraulic diameter, uyy is the
mean velocity of the flow in the pipe, and f is the Darcy-Weisbach friction
factor (see Fig. 7.6).

Optimizing the design of an exchanger is not just a matter of making
Ap as small as possible. Often, heat exchange can be augmented by em-
ploying fins or roughening elements in an exchanger. (We discuss such
elements in Chapter 4; see, e.g., Fig. 4.6). Such augmentation will invari-
ably increase the pressure drop, but it can also reduce the fixed cost of
an exchanger by increasing U and reducing the required area. Further-
more, it can reduce the required flow rate of, say, coolant, by increasing
the effectiveness and thus balance the increase of Ap in eqn. (3.23).

To better understand the course of the design process, faced with
such an array of trade-offs of advantages and penalties, we follow Ta-
borek’s [3.6] list of design considerations for a large shell-and-tube ex-
changer:

e Decide which fluid should flow on the shell side and which should
flow in the tubes. Normally, this decision will be made to minimize
the pumping cost. If, for example, water is being used to cool oil,
the more viscous oil would flow in the shell. Corrosion behavior,
fouling, and the problems of cleaning fouled tubes also weigh heav-
ily in this decision.

e Early in the process, the designer should assess the cost of the cal-
culation in comparison with:

(a) The converging accuracy of computation.
(b) The investment in the exchanger.
(c) The cost of miscalculation.

e Make a rough estimate of the size of the heat exchanger using, for
example, U values from Table 2.2 and/or anything else that might
be known from experience. This serves to circumscribe the sub-
sequent trial-and-error calculations; it will help to size flow rates
and to anticipate temperature variations; and it will help to avoid
subsequent errors.
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e Evaluate the heat transfer, pressure drop, and cost of various ex-
changer configurations that appear reasonable for the application.
This is usually done with large-scale computer programs that have
been developed and are constantly being improved as new research
is included in them.

The computer runs suggested by this procedure are normally very com-
plicated and might typically involve 200 successive redesigns, even when
relatively efficient procedures are used.

However, most students of heat transfer will not have to deal with
such designs. Many, if not most, will be called upon at one time or an-
other to design smaller exchangers in the range 0.1 to 10 m2. The heat
transfer calculation can usually be done effectively with the methods de-
scribed in this chapter. Some useful sources of guidance in the pressure
drop calculation are the Heat Exchanger Design Handbook [3.7], the data
in Idelchik’s collection [3.8], the TEMA design book [3.1], and some of the
other references at the end of this chapter.

In such a calculation, we start off with one fluid to heat and one to
cool. Perhaps we know the flow heat capacity rates (C, and Cj), certain
temperatures, and/or the amount of heat that is to be transferred. The
problem can be annoyingly wide open, and nothing can be done until it is
somehow delimited. The normal starting point is the specification of an
exchanger configuration, and to make this choice one needs experience.
The descriptions in this chapter provide a kind of first level of experi-
ence. References [3.5, 3.7, 3.9, 3.10, 3.11, 3.12] provide a second level.
Manufacturer’s catalogues are an excellent source of more advanced in-
formation.

Once the exchanger configuration is set, U will be approximately set
and the area becomes the basic design variable. The design can then
proceed along the lines of Section 3.2 or 3.3. If it is possible to begin
with a complete specification of inlet and outlet temperatures,

Q = U AF(LMID)
— —_ —-
CAT  known calculable

Then A can be calculated and the design completed. Usually, a reevalu-
ation of U and some iteration of the calculation is needed.

More often, we begin without full knowledge of the outlet tempera-
tures. In such cases, we normally have to invent an appropriate trial-and-
error method to get the area and a more complicated sequence of trials if
we seek to optimize pressure drop and cost by varying the configuration
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as well. If the C’s are design variables, the U will change significantly,
because h’s are generally velocity-dependent and more iteration will be
needed.

We conclude Part I of this book facing a variety of incomplete issues.
Most notably, we face a serious need to be able to determine convective
heat transfer coefficients. The prediction of h depends on a knowledge of
heat conduction. We therefore turn, in Part II, to a much more thorough
study of heat conduction analysis than was undertaken in Chapter 2.
In addition to setting up the methodology ultimately needed to predict
I’s, Part I will also deal with many other issues that have great practical
importance in their own right.

Problems

3.1 Can you have a cross-flow exchanger in which both flows are
mixed? Discuss.

3.2 Find the appropriate mean radius, 7, that will make
Q = kA(¥)AT/(r,—1i), valid for the one-dimensional heat con-
duction through a thick spherical shell, where A(7) = ATT7? (cf.
Example 3.1).

3.3 Rework Problem 2.14, using the methods of Chapter 3.

3.4 2.4 kg/s of a fluid have a specific heat of 0.81 kJ/kg-K enter a
counterflow heat exchanger at 0°C and are heated to 400°C by
2 kg/s of a fluid having a specific heat of 0.96 kJ/kg-K entering
the unit at 700°C. Show that to heat the cooler fluid to 500°C,
all other conditions remaining unchanged, would require the
surface area for a heat transfer to be increased by 87.5%.

3.5 A cross-flow heat exchanger with both fluids unmixed is used
to heat water (¢, = 4.18 kJ/kg-K) from 40°C to 80°C, flowing at
the rate of 1.0 kg/s. What s the overall heat transfer coefficient
if hot engine oil (¢, = 1.9 kJ/kg-K), flowing at the rate of 2.6
kg/s, enters at 100°C? The heat transfer area is 20 m?. (Note
that you can use either an effectiveness or an LMTD method.
It would be wise to use both as a check.)

3.6 Saturated non-oil-bearing steam at 1 atm enters the shell pass
of a two-tube-pass shell condenser with thirty 20 ft tubes in
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3.7

3.8

3.9

3.10

3.11

3.12

each tube pass. They are made of schedule 160, % in. steel
pipe (nominal diameter). A volume flow rate of 0.01 ft3/s of
water entering at 60°F enters each tube. The condensing heat
transfer coefficient is 2000 Btu/h-ft2-°F, and we calculate h =
1380 Btu/h-ft2°F for the water in the tubes. Estimate the exit
temperature of the water and mass rate of condensate [#1, ~
8393 Iby, /h.]

Consider a counterflow heat exchanger that must cool 3000
kg/h of mercury from 150°F to 128°F. The coolant is 100 kg/h
of water, supplied at 70°F. If U is 300 W/m?2K, complete the
design by determining reasonable value for the area and the
exit-water temperature. [A = 0.147 m?2.]

An automobile air-conditioner gives up 18 kW at 65 km/h if the
outside temperature is 35°C. The refrigerant temperature is
constant at 65°C under these conditions, and the air rises 6°C
in temperature as it flows across the heat exchanger tubes. The
heat exchanger is of the finned-tube type shown in Fig. 3.6b,
with U = 200 W/m2K. If U ~ (air velocity)%” and the mass flow
rate increases directly with the velocity, plot the percentage
reduction of heat transfer in the condenser as a function of air
velocity between 15 and 65 km/h.

Derive eqn. (3.21).

Derive the infinite NTU limit of the effectiveness of parallel and
counterflow heat exchangers at several values of Cpin/Cmax-
Use common sense and the First Law of Thermodynamics, and
refer to eqn. (3.2) and eqn. (3.21) only to check your results.

Derive the equation € = (NTU, Ciin/Cmax) for the heat exchan-
ger depicted in Fig. 3.9.

A single-pass heat exchanger condenses steam at 1 atm on
the shell side and heats water from 10°C to 30°C on the tube
side with U = 2500 W/m?2K. The tubing is thin-walled, 5 cm in
diameter, and 2 m in length. (a) Your boss asks whether the
exchanger should be counterflow or parallel-flow. How do you
advise her? Evaluate: (b) the LMTD; (c) mn,0; (d) €. [ =0.222.]
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3.13 Air at 2 kg/s and 27°C and a stream of water at 1.5 kg/s and
60°C each enter a heat exchanger. Evaluate the exit tempera-
tures if A =12 m?, U = 185 W/m?2K, and:

The exchanger is parallel flow;

The exchanger is counterflow [T}, =~ 54.0°C.];

The exchanger is cross-flow, one stream mixed;

e o Tp

The exchanger is cross-flow, neither stream mixed.
[Th,,, = 53.62°C.]

3.14 Air at 0.25 kg/s and 0°C enters a cross-flow heat exchanger.
It is to be warmed to 20°C by 0.14 kg/s of air at 50°C. The
streams are unmixed. As a first step in the design process,
plot U against A and identify the approximate range of area
for the exchanger.

3.15 A particular two shell-pass, four tube-pass heat exchanger uses
20 kg/s of river water at 10°C on the shell side to cool 8 kg/s
of processed water from 80°C to 25°C on the tube side. At
what temperature will the coolant be returned to the river? If
U is 800 W/m?K, how large must the exchanger be?

3.16 A particular cross-flow process heat exchanger operates with
the fluid mixed on one side only. When it is new, U = 2000
W/m?K, Te, = 25°C, Tegy = 80°C, Thy, = 160°C, and Ty, =
70°C. After 6 months of operation, the plant manager reports
that the hot fluid is only being cooled to 90°C and that he is
suffering a 30% reduction in total heat transfer. What is the
fouling resistance after 6 months of use? (Assume no reduc-
tion of cold-side flow rate by fouling.)

3.17 Water at 15°C is supplied to a one-shell-pass, two-tube-pass
heat exchanger to cool 10 kg/s of liquid ammonia from 120°C
to 40°C. You anticipate a U on the order of 1500 W/m?K when
the water flows in the tubes. If A is to be 90 m?2, choose the
correct flow rate of water.

3.18 Suppose that the heat exchanger in Example 3.5 had been a two
shell-pass, four tube-pass exchanger with the hot fluid moving
in the tubes. (a) What would be the exit temperature in this
case? [T¢,,, = 75.09°C.] (b) What would be the area if we wanted
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3.19

3.20

3.21

3.22

3.23

3.24

the hot fluid to leave at the same temperature that it does in
the example?

Plot the maximum tolerable fouling resistance as a function
of Upew for a counterflow exchanger, with given inlet temper-
atures, if a 30% reduction in U is the maximum that can be
tolerated.

Water at 0.8 kg/s enters the tubes of a two-shell-pass, four-
tube-pass heat exchanger at 17°C and leaves at 37°C. It cools
0.5 kg/s of air entering the shell at 250°C with U = 432 W/m?2K.
Determine: (a) the exit air temperature; (b) the area of the heat
exchanger; and (c) the exit temperature if, after some time,
the tubes become fouled with Ry = 0.0005 m?K/W. [(¢) Tairey
=140.5°C.]

You must cool 78 kg/min of a 60%-by-mass mixture of glycerin
in water from 108°C to 50°C using cooling water available at
7°C. Design a one-shell-pass, two-tube-pass heat exchanger if
U = 637 W/m?K. Explain any design decision you make and
report the area, Tx,0,,, and any other relevant features.

A mixture of 40%-by-weight glycerin, 60% water, enters a smooth
0.113 mI.D. tube at 30°C. The tube is kept at 50°C, and #1mixture
= 8 kg/s. The heat transfer coefficient inside the pipe is 1600
W/m?K. Plot the liquid temperature as a function of position
in the pipe.

Explain in physical terms why all effectiveness curves Fig. 3.16
and Fig. 3.17 have the same slope as NTU — 0. Obtain this
slope from eqns. (3.20) and (3.21).

You want to cool air from 150°C to 60°C but you cannot af-
ford a custom-built heat exchanger. You find a used cross-flow
exchanger (both fluids unmixed) in storage. It was previously
used to cool 136 kg/min of NH3 vapor from 200°C to 100°C us-
ing 320 kg/min of water at 7°C; U was previously 480 W/m?2K.
How much air can you cool with this exchanger, using the same
water supply, if U is approximately unchanged? (Actually, you
would have to modify U using the methods of Chapters 6 and
7 once you had the new air flow rate, but that is beyond our
present scope.)
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3.25

3.26

3.27

3.28

3.29

3.30

3.31

A one tube-pass, one shell-pass, parallel-flow, process heat ex-
changer cools 5 kg/s of gaseous ammonia entering the shell
side at 250°C and boils 4.8 kg/s of water in the tubes. The wa-
ter enters subcooled at 27°C and boils when it reaches 100°C.
U = 480 W/m?K before boiling begins and 964 W/m?K there-
after. The area of the exchanger is 45 m?, and h g for water
is 2.257 x 106 J/kg. Determine the quality of the water at the
exit.

0.72 kg/s of superheated steam enters a crossflow heat ex-
changer at 240°C and leaves at 120°C. It heats 0.6 kg/s of water
entering at 17°C. U = 612 W/m?K. By what percentage will the
area differ if a both-fluids-unmixed exchanger is used instead
of a one-fluid-unmixed exchanger? [—1.8%]

Compare values of F from Fig. 3.14(c) and Fig. 3.14(d) for the
same conditions of inlet and outlet temperatures. Is the one
with the higher F automatically the more desirable exchanger?
Discuss.

Compare values of ¢ for the same NTU and Cpin/Cmax in paral-
lel and counterflow heat exchangers. Is the one with the higher
€ automatically the more desirable exchanger? Discuss.

The irreversibility rate of a process is equal to the rate of en-
tropy production times the lowest absolute sink temperature
accessible to the process. Calculate the irreversibility (or lost
work) for the heat exchanger in Example 3.4. What kind of
configuration would reduce the irreversibility, given the same
end temperatures.

Plot Toi and Th,0 as a function of position in a very long coun-
terflow heat exchanger where water enters at 0°C, with Cy,0 =
460 W/K, and oil enters at 90°C, with Cgj = 920 W/K, U = 742
W/m?K, and A = 10 m2. Criticize the design.

Liquid ammonia at 2 kg/s is cooled from 100°C to 30°C in the
shell side of a two shell-pass, four tube-pass heat exchanger
by 3 kg/s of water at 10°C. When the exchanger is new, U =
750 W/m?2K. Plot the exit ammonia temperature as a function
of the increasing tube fouling factor.
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3.32

3.33

3.34

3.35

3.36

3.37

A one shell-pass, two tube-pass heat exchanger cools 0.403
kg/s of methanol from 47°C to 7°C on the shell side. The
coolant is 2.2 kg/s of Freon 12, entering the tubes at —33°C,
with U = 538 W/m?2K. A colleague suggests that this arrange-
ment wastes Freon. She thinks you could do almost as well if
you cut the Freon flow rate all the way down to 0.8 kg/s. Cal-
culate the new methanol outlet temperature that would result
from this flow rate, and evaluate her suggestion.

The factors dictating the heat transfer coefficients in a certain
two shell-pass, four tube-pass heat exchanger are such that
U increases as (#itshen)?%. The exchanger cools 2 kg/s of air
from 200°C to 40°C using 4.4 kg/s of water at 7°C,and U = 312
W/m?2K under these circumstances. If we double the air flow,
what will its temperature be leaving the exchanger? [Tair,,, =
61°C.]

A flow rate of 1.4 kg/s of water enters the tubes of a two-shell-
pass, four-tube-pass heat exchanger at 7°C. A flow rate of 0.6
kg/s of liquid ammonia at 100°C is to be cooled to 30°C on
the shell side; U = 573 W/m?K. (a) How large must the heat
exchanger be? (b) How large must it be if, after some months,
a fouling factor of 0.0015 will build up in the tubes, and we still
want to deliver ammonia at 30°C? (c) If we make it large enough
to accommodate fouling, to what temperature will it cool the
ammonia when it is new? (d) At what temperature does water
leave the new, enlarged exchanger? [(d) T,0 = 49.9°C.]

Both C’s in a parallel-flow heat exchanger are equal to 156 W/K,
U =327 W/m?K and A = 2 m?. The hot fluid enters at 140°C
and leaves at 90°C. The cold fluid enters at 40°C. If both C’s
are halved, what will be the exit temperature of the hot fluid?

A 1.68 ft? cross-flow heat exchanger with one fluid mixed con-
denses steam at atmospheric pressure (h = 2000 Btu/h-ft?°F)
and boils methanol (Tsa: = 170°F and h = 1500 Btu/h-ft2 °F) on
the other side. Evaluate U (neglecting resistance of the metal),
LMTD, F, NTU, ¢, and Q.

Eqn. (3.21) is troublesome when Cnpin/Cmax = 1. Develop a
working equation for ¢ in this case. Compare it with Fig. 3.16.
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3.38

3.39

3.40

3.41

The effectiveness of a cross-flow exchanger with neither fluid
mixed can be calculated from the following approximate for-
mula:

£ =1 — exp |exp(~NTU*"8r) — 1](NTU2/7)|

where ¥ = Chpin/Cmax. How does this compare with correct
values?

Calculate the area required in a two-tube-pass, one-shell-pass
condenser that is to condense 10° kg/h of steam at 40°C using
water at 17°C. Assume that U = 4700 W/m?K, the maximum
allowable temperature rise of the water is 10°C, and h ,; = 2406

kJ/kg.

An engineer wants to divert 1 gal/min of water at 180°F from
his car radiator through a small cross-flow heat exchanger with
neither flow mixed, to heat 40°F water to 140°F for shaving
when he goes camping. If he produces a pint per minute of
hot water, what will be the area of the exchanger and the tem-
perature of the returning radiator coolant if U = 720 W/m?K?

In a process for forming lead shot, molten droplets of lead
are showered into the top of a tall tower. The droplets fall
through air and solidify before they reach the bottom of the
tower. The solid shot is collected at the bottom. To maintain a
steady state, cool air is introduced at the bottom of the tower
and warm air is withdrawn at the top. For a particular tower,
the droplets are 1 mm in diameter and at their melting tem-
perature of 600 K when they are released. The latent heat of
solidification is 850 kJ/kg. They fall with a mass flow rate of
200 kg/hr. There are 2430 droplets per cubic meter of air in-
side the tower. Air enters the bottom at 20°C with a mass flow
rate of 1100 kg/hr. The tower has an internal diameter of 1 m
with adiabatic walls.

a. Sketch, qualitatively, the temperature distributions of the
shot and the air along the height of the tower.

b. If it is desired to remove the shot at a temperature of
60°C, what will be the temperature of the air leaving the
top of the tower?
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c. Determine the air temperature at the point where the lead
has just finished solidifying.

d. Determine the height that the tower must have in order to
function as desired. The heat transfer coefficient between
the air and the droplets is h = 318 W/m?K.
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4. Analysis of heat conduction and
some steady one-dimensional
problems

The effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which
we are about to explain is to demonstrate these laws; it reduces all physical
researches on the propagation of heat to problems of the calculus whose
elements are given by experiment.

The Analytical Theory of Heat, ]J. Fourier

4.1 The well-posed problem

The heat diffusion equation was derived in Section 2.1 and some atten-
tion was given to its solution. Before we go further with heat conduction
problems, we must describe how to state such problems so they can re-
ally be solved. This is particularly important in approaching the more
complicated problems of transient and multidimensional heat conduc-
tion that we have avoided up to now.

A well-posed heat conduction problem is one in which all the relevant
information needed to obtain a unique solution is stated. A well-posed
and hence solvable heat conduction problem will always read as follows:

Find T(x, v, z, t) such that:

1.
V- (kVT)+q = pcaa—:[

for 0 <t < T (where 7 can — o), and for (x, y, z) belonging to
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some region, R, which might extend to infinity.!

2. T=Ti(x,y,z) at t=0

This is called an initial condition, or i.c.

(a) Condition 1 above is not imposed at t = 0.
(b) Only one i.c. is required. However,
(c) The i.c. is not needed:

i. In the steady-state case: V - (kVT) +q = 0.

ii. For “periodic” heat transfer, where g or the boundary con-
ditions vary periodically with time, and where we ignore
the starting transient behavior.

3. T must also satisfy two boundary conditions, or b.c.’s, for each co-
ordinate. The b.c.’s are very often of three common types.

(a) Dirichlet conditions, or b.c.’s of the first kind.:

T is specified on the boundary of R for t > 0. We saw such
b.c.’s in Examples 2.1, 2.2, and 2.5.

(b) Neumann conditions, or b.c.’s of the second kind:

The derivative of T normal to the boundary is specified on the
boundary of R for t > 0. Such a condition arises when the heat
flux, k(0T /0x), is specified on a boundary or when , with the
help of insulation, we set 0T /0x equal to zero.?

(c) b.c.’s of the third kind:
A derivative of T in a direction normal to a boundary is propor-
tional to the temperature on that boundary. Such a condition
most commonly arises when convection occurs at a boundary,
and it is typically expressed as

oT

-k — = h(T - Tw
ox bndry ( )bndry

when the body lies to the left of the boundary on the x-coor-
dinate. We have already used such a b.c. in Step 4 of Example
2.6, and we have discussed it in Section 1.3 as well.

1(x,y,z) might be any coordinates describing a position 7: T(x,y,z,t) = T(7,t).

2 Although we write 0T /0x here, we understand that this might be 0T /0z, 0T /07,
or any other derivative in a direction locally normal to the surface on which the b.c. is
specified.
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Figure 4.1 The transient cooling of a body as it might occur,
subject to boundary conditions of the first, second, and third
kinds.

This list of b.c.’s is not complete, by any means, but it includes a great
number of important cases.

Figure 4.1 shows the transient cooling of body from a constant initial
temperature, subject to each of the three b.c.’s described above. Notice
that the initial temperature distribution is not subject to the boundary
condition, as pointed out previously under 2(a).

The eight-point procedure that was outlined in Section 2.2 for solving
the heat diffusion equation was contrived in part to assure that a problem
will meet the preceding requirements and will be well posed.

4.2 The general solution

Once the heat conduction problem has been posed properly, the first step
in solving it is to find the general solution of the heat diffusion equation.
We have remarked that this is usually the easiest part of the problem.
We next consider some examples of general solutions.
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One-dimensional steady heat conduction

Problem 4.1 emphasizes the simplicity of finding the general solutions of
linear ordinary differential equations, by asking for a table of all general
solutions of one-dimensional heat conduction problems. We shall work
out some of those results to show what is involved. We begin the heat
diffusion equation with constant k and g:

q 10T

2 4
veT + AT (2.11)

Cartesian coordinates: Steady conduction in the y-direction. Equation
(2.11) reduces as follows:

02T 0°T 0°T q_

+ + += Lot
0x2 0y? 0z2 k x ot
—— —— e —

=0 =0 = 0, since steady
Therefore,
T4
dy? k

which we integrate twice to get
a o
IT'=-—y"+Ciy+C
Zky 1Y 2
or,if g =0,

T=Cy+(C

Cylindrical coordinates with a heat source: Tangential conduction.
This time, we look at the heat flow that results in a ring when two points
are held at different temperatures. We now express eqn. (2.11) in cylin-
drical coordinates with the help of egn. (2.13):
1a<aT) 1 0°T 0°T gq 10T
——\lr= )+ 5= t=5+7 = ——
ror \' or r2o¢p2  0z2 k « ot
—_— —_—
=0 ¥ =constant =0 = 0, since steady
Two integrations give
_r’q
2k
This would describe, for example, the temperature distribution in the
thin ring shown in Fig. 4.2. Here the b.c.’s might consist of temperatures
specified at two angular locations, as shown.

T = P>+ Cip + Co (4.1)
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~

r = constant T=T,

Figure 4.2 One-dimensional heat conduction in a ring.

T = T(t only)
If T is spatially uniform, it can still vary with time. In such cases
g 10T
VT ++ = =——
k oot
=0

and 0T /0t becomes an ordinary derivative. Then, since & = k/pc,

ar _ 4 (4.2)
at  pc
This result is consistent with the lumped-capacity solution described in
Section 1.3. If the Biot number is low and internal resistance is unimpor-
tant, the convective removal of heat from the boundary of a body can be
prorated over the volume of the body and interpreted as

N(Thody — Teo) A
volume

W/m?3 (4.3)

q-effective = -
and the heat diffusion equation for this case, egn. (4.2), becomes

daT hA

— =—— (T -Ts 4.4

i pcV( ) (4.4)
The general solution in this situation was given in eqn. (1.21). [A partic-
ular solution was also written in eqn. (1.22).]
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Separation of variables: A general solution of multidimensional
problems

Suppose that the physical situation permits us to throw out all but one of
the spatial derivatives in a heat diffusion equation. Suppose, for example,
that we wish to predict the transient cooling in a slab as a function of
the location within it. If there is no heat generation, the heat diffusion
equation is

0°T _ 10T
0x2 ot
A common trick is to ask: “Can we find a solution in the form of a product

of functions of t and x: T = T (t) - X(x)?” To find the answer, we
substitute this in eqn. (4.5) and get

4.5)

X'T = éf’x (4.6)

where each prime denotes one differentiation of a function with respect
to its argument. Thus 7' = d7/dt and X" = d2X/dx?. Rearranging
eqn. (4.6), we get

X!!_lfz—’l
X «T

This is an interesting result in that the left-hand side depends only
upon x and the right-hand side depends only upon t. Thus, we set both
sides equal to the same constant, which we call —A?, instead of, say, A,
for reasons that will be clear in a moment:

X/l 3 l,l—’/ 3

X «T
It follows that the differential eqn. (4.7a) can be resolved into two ordi-
nary differential equations:

(4.7a)

—AZ  a constant (4.7b)

X" =-A%2X and T’ =-aA’T (4.8)

The general solution of both of these equations are well known and
are among the first ones dealt with in any study of differential equations.
They are:

X(x)=AsinAx + BcosAx for A+0

X(x) = Ax + B for A =0 (4.9)
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and

T(t) = Ce*Nt for A#0

T(t)=C for A=0 (4.10)

where we use capital letters to denote constants of integration. [In ei-
ther case, these solutions can be verified by substituting them back into
eqn. (4.8).] Thus the general solution of egn. (4.5) can indeed be written
in the form of a product, and that product is

T=XT =e*(DsinAx + EcosAx) for A =0

T=XT =Dx+E for A=0 (4.11)

The usefulness of this result depends on whether or not it can be fit
to the b.c.’s and the i.c. In this case, we made the function X (t) take the
form of sines and cosines (instead of exponential functions) by placing
a minus sign in front of A2. The sines and cosines make it possible to fit
the b.c.’s using Fourier series methods. These general methods are not
developed in this book; however, a complete Fourier series solution is
presented for one problem in Section 5.3.

The preceding simple methods for obtaining general solutions of lin-
ear partial d.e.’s is called the method of separation of variables. It can be
applied to all kinds of linear d.e.’s. Consider, for example, two-dimen-
sional steady heat conduction without heat sources:

0°T  0°T
Set T = XV and get
X// 3 y// 3 2
X vy A
where A can be an imaginary number. Then
X = AsinAx + BcosAx
A A for A =0
Y =Ce"Y +De™ "V
X=Ax+B for A = 0
y=cy+p| "7

The general solution is

T = (EsinAx + FcosAx)(e Y + Ge'Y) forA =0

T = (Ex +F)(y +G) forA =0 (4.13)
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Figure 4.3 A two-dimensional slab maintained at a constant
temperature on the sides and subjected to a sinusoidal varia-
tion of temperature on one face.

Example 4.1

A long slab is cooled to 0°C on both sides and a blowtorch is turned
on the top edge, giving an approximately sinusoidal temperature dis-
tribution along the top, as shown in Fig. 4.3. Find the temperature
distribution within the slab.

SOLUTION. The general solution is given by eqn. (4.13). We must
therefore identify the appropriate b.c.’s and then fit the general solu-
tion to it. Those b.c.’s are:

on the top surface : T(x,0)=A sinrr%

on the sides : TOorL,y)=0
asy — oo : T(x,y - )=0

Substitute eqn. (4.13) in the third b.c.:
(EsinAx + FcosAx)(0+ G -0) =0

The only way that this can be true for all x is if G = 0. Substitute
eqn. (4.13), with G = 0, into the second b.c.:

(O +Fle =0
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so F also equals 0. Substitute eqn. (4.13) with G = F = 0, into the first
b.c.
. 4
E(sinAx) = Asmrrz

It follows that A = E and A = 1r/L. Then eqn. (4.13) becomes the
particular solution that satisfies the b.c.’s:

T=A (sinrr%) e TYIL

Thus, the sinusoidal variation of temperature at the top of the slab is
attenuated exponentially at lower positions in the slab. At a position
of y = 2L below the top, T will be 0.0019 Asin7rx/L. The tempera-
ture distribution in the x-direction will still be sinusoidal, but it will
have less than 1/500 of the amplitude at y = 0. |

Consider some important features of this and other solutions:

e The b.c. at v = 0 is a special one that works very well with this
particular general solution. If we had tried to fit the equation to
a general temperature distribution, T(x,y = 0) = fn(x), it would
not have been obvious how to proceed. Actually, this is the kind
of problem that Fourier solved with the help of his Fourier series
method. We discuss this matter in more detail in Chapter 5.

e Not all forms of general solutions lend themselves to a particular
set of boundary and/or initial conditions. In this example, we made
the process look simple, but more often than not, it is in fitting a
general solution to a set of boundary conditions that we get stuck.

e Normally, on formulating a problem, we must approximate real be-
havior in stating the b.c.’s. It is advisable to consider what kind of
assumption will put the b.c.’s in a form compatible with the gen-
eral solution. The temperature distribution imposed on the slab
by the blowtorch in Example 4.1 might just as well have been ap-
proximated as a parabola. But as small as the difference between a
parabola and a sine function might be, the latter b.c. was far easier
to accommodate.

e The twin issues of existence and uniqueness of solutions require
a comment here: It has been established that solutions to all well-
posed heat diffusion problems are unique. Furthermore, we know
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from our experience that if we describe a physical process correctly,
a unique outcome exists. Therefore, we are normally safe to leave
these issues to a mathematician—at least in the sort of problems
we discuss here.

e Given that a unique solution exists, we accept any solution as cor-
rect since we have carved it to fit the boundary conditions. In this
sense, the solution of differential equations is often more of an in-
centive than a formal operation. The person who does it best is
often the person who has done it before and so has a large assort-
ment of tricks up his or her sleeve.

4.3 Dimensional analysis
Introduction

Most universities place the first course in heat transfer after an introduc-
tion to fluid mechanics: and most fluid mechanics courses include some
dimensional analysis. This is normally treated using the familiar method
of indices, which is seemingly straightforward to teach but is cumber-
some and sometimes misleading to use. It is rather well presented in
[4.1].

The method we develop here is far simpler to use than the method
of indices, and it does much to protect us from the common errors we
might fall into. We refer to it as the method of functional replacement.

The importance of dimensional analysis to heat transfer can be made
clearer by recalling Example 2.6, which (like most problems in Part I) in-
volved several variables. Theses variables included the dependent vari-
able of temperature, (T — T;);3 the major independent variable, which
was the radius, 7; and five system parameters, ¥, 7o, 1, k, and (Tw — T}).
By reorganizing the solution into dimensionless groups [eqn. (2.24)], we
reduced the total number of variables to only four:

T-T; i
—*X =fn| 7/r, Yo/Ti, Bi (2.24a)
&—,—J L_V_J \ v )
dependent variable indep. var. two system parameters

3Notice that we do not call T; a variable. It is simply the reference temperature
against which the problem is worked. If it happened to be 0°C, we would not notice its
subtraction from the other temperatures.
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This solution offered a number of advantages over the dimensional
solution. For one thing, it permitted us to plot all conceivable solutions
for a particular shape of cylinder, (v,/7;), in a single figure, Fig. 2.13.
For another, it allowed us to study the simultaneous roles of h, k and 7,
in defining the character of the solution. By combining them as a Biot
number, we were able to say—even before we had solved the problem—
whether or not external convection really had to be considered.

The nondimensionalization made it possible for us to consider, simul-
taneously, the behavior of all similar systems of heat conduction through
cylinders. Thus a large, highly conducting cylinder might be similar in
its behavior to a small cylinder with a lower thermal conductivity.

Finally, we shall discover that, by nondimensionalizing a problem be-
fore we solve it, we can often greatly simplify the process of solving it.

Our next aim is to map out a method for nondimensionalization prob-
lems before we have solved then, or, indeed, before we have even written
the equations that must be solved. The key to the method is a result
called the Buckingham pi-theorem.

The Buckingham pi-theorem

The attention of scientific workers was apparently drawn very strongly
toward the question of similarity at about the beginning of World War 1.
Buckingham first organized previous thinking and developed his famous
theorem in 1914 in the Physical Review [4.2], and he expanded upon the
idea in the Transactions of the ASME one year later [4.3]. Lord Rayleigh
almost simultaneously discussed the problem with great clarity in 1915
[4.4]. To understand Buckingham’s theorem, we must first overcome one
conceptual hurdle, which, if it is clear to the student, will make everything
that follows extremely simple. Let us explain that hurdle first.
Suppose that y depends on v, x, z and so on:

y=y(r,x,z...)

We can take any one variable—say, x—and arbitrarily multiply it (or it
raised to a power) by any other variables in the equation, without altering
the truth of the functional equation, like this:
Y_X (xzr,x,xz>
X X

To see that this is true, consider an arbitrary equation:

y=y(rx,z) =r(sinx)e
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This need only be rearranged to put it in terms of the desired modified
variables and x itself (y/x,xzr,x, and xz):
y 2 Xz

Y _x7 (sinx) ex [——]
x  x3 P17

We can do any such multiplying or dividing of powers of any variable
we wish without invalidating any functional equation that we choose to
write. This simple fact is at the heart of the important example that
follows:

Example 4.2

Consider the heat exchanger problem described in Fig. 3.15. The “un-
known,” or dependent variable, in the problem is either of the exit
temperatures. Without any knowledge of heat exchanger analysis, we
can write the functional equation on the basis of our physical under-
standing of the problem:

Teout = Ten = fn | Cmax, Cmin, (Thm - Tcm), u ,A (4.14)
—_— —_— e — — ) e
K W/K  W/K K W/m?K m?

where the dimensions of each term are noted under the quotation.

We want to know how many dimensionless groups the variables in
eqn. (4.14) should reduce to. To determine this number, we use the
idea explained above—that is, that we can arbitrarily pick one vari-
able from the equation and divide or multiply it into other variables.
Then—one at a time—we select a variable that has one of the dimen-
sions. We divide or multiply it by the other variables in the equation
that have that dimension in such a way as to eliminate the dimension
from them.

We do this first with the variable (Tjy,, — T,,), which has the di-
mension of K.

TCout _ TCin

=fn Cmax(Thm - Tcm); Cmin(Thin - Tcin),
Thm - TCm . v )\ v /
dimensionless

(T]’Lm - TCm); U(Thm - TCjn)) A
A 7\ v ’ —~—

Y

K W/m? m?
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The interesting thing about the equation in this form is that the only
remaining term in it with the units of K is (Tp,, — T¢,). No such
term can exist in the equation because it is impossible to achieve
dimensional homogeneity without another term in K to balance it.
Therefore, we must remove it.

Teow — T¢

—— =fn Cmax (Thy, — Te)s Cmin (Thyy, — Tey), U(Thy, — Tey), A
Thin - TCin h ~ /- ~ = -~ )
i ; w w W/m?2 m?2

dimensionless

Now the equation has only two dimensions in it—W and m?. Next, we
multiply U (T, — T¢,,) by A to getrid of m? in the second-to-last term.
Accordingly, the term A (m?) can no longer stay in the equation, and
we have

TCout — TCin

=fn Cmax (Thy, — Tew)s Cmin (Thy, — Tey), UA(Thy, — Teyn),
Thm — TCin R § ) . . $ ,
R W w w
dimensionless

Next, we divide the first and third terms on the right by the second.
This leaves only Ciin (T, — T¢;,), with the dimensions of W. That term
must then be removed, and we are left with the completely dimension-
less result:

(4.15)

TCout - Tcin _ fn (Cmax UA >
|

Ty, — Tein Cmin’ Cmin

Equation (4.15) has exactly the same functional form as eqgn. (3.21),
which we obtained by direct analysis.

Notice that we removed one variable from eqn. (4.14) for each di-
mension in which the variables are expressed. If there are n variables—
including the dependent variable—expressed in m dimensions, we then
expect to be able to express the equation in (n — m) dimensionless
groups, or pi-groups, as Buckingham called them.

This fact is expressed by the Buckingham pi-theorem, which we state
formally in the following way:
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A physical relationship among » variables, which can be ex-
pressed in a minimum of m dimensions, can be rearranged into
arelationship among (n — m) independent dimensionless groups
of the original variables.

Two important qualifications have been italicized. They will be explained
in detail in subsequent examples.

Buckingham called the dimensionless groups pi-groups and identified
them as IIy,IIy,...,I1;-». Normally we call I1; the dependent variable
and retain Ilp_ (;,—) as independent variables. Thus, the dimensional
functional equation reduces to a dimensionless functional equation of
the form

Hl ZfH(HZ,Hg,...,Hn,m) (4.16)

Applications of the pi-theorem

Example 4.3

Is egn. (2.24) consistent with the pi-theorem?

SOLUTION. To find out, we first write the dimensional functional
equation for Example 2.6:

T—Ti:fn[r,ri,ro, h , k ,(Too—Tl-)]
— ~
K m m m WmPK W/mK K

There are seven variables (n = 7) in three dimensions, K, m, and W
(m = 3). Therefore, we look for 7 — 3 = 4 pi-groups. There are four
pi-groups in eqn. (2.24):

T-T; ¥ 7 _ hr

, IIh=—, II3=—, Ily= = Bi. [ |
Too—Ti 2 i 3 Ti 4 k !

M =

Consider two features of this result. First, the minimum number of
dimensions was three. If we had written watts as J/s, we would have
had four dimensions instead. But Joules never appear in that particular
problem independently of seconds. They always appear as a ratio and
should not be separated. (If we had worked in English units, this would
have seemed more confusing, since there is no name for Btu/sec unless
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we first convert it to horsepower.) The failure to identify dimensions
that are consistently grouped together is one of the major errors that the
beginner makes in using the pi-theorem.

The second feature is the independence of the groups. This means
that we may pick any four dimensionless arrangements of variables, so
long as no group or groups can be made into any other group by math-
ematical manipulation. For example, suppose that someone suggested
that there was a fifth pi-group in Example 4.3:

hr

M5 =/

It is easy to see that IT5 can be written as

[hry [v [7 11
Ils = — | = |Bi==
> k i Yo 1H3

Therefore IT5 is not independent of the existing groups, nor will we ever
find a fifth grouping that is.

Another matter that is frequently made much of is that of identifying
the pi-groups once the variables are identified for a given problem. (The
method of indices [4.1] is a cumbersome arithmetic strategy for doing
this but it is perfectly correct.) We shall find the groups by using either
of two methods:

1. The groups can always be obtained formally by repeating the simple
elimination-of-dimensions procedure that was used to derive the
pi-theorem in Example 4.2.

2. One may simply arrange the variables into the required number of
independent dimensionless groups by inspection.

In any method, one must make judgments in the process of combining
variables and these decisions can lead to different arrangements of the
pi-groups. Therefore, if the problem can be solved by inspection, there
is no advantage to be gained by the use of a more formal procedure.

The methods of dimensional analysis can be used to help find the
solution of many physical problems. We offer the following example,
not entirely with tongue in cheek:

Example 4.4

Einstein might well have noted that the energy equivalent, e, of a rest
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mass, m,, depended on the velocity of light, ¢,, before he developed
the special relativity theory. He wold then have had the following
dimensional functional equation:

kg- m?
§2

(e N-m or e > =fn(com/s, mykg)
The minimum number of dimensions is only two: kg and m/s, so we
look for 3 — 2 = 1 pi-group. To find it formally, we eliminated the
dimension of mass from e by dividing it by m, (kg). Thus,

e m?

E?:fn[com/S,\ movkg J]

this must be removed

because it is the only
term with mass in it

Then we eliminate the dimension of velocity (m/s) by dividing e/m,
by c2:

mjcg = fn (c, m/s)

This time ¢, must be removed from the function on the right, since it
is the only term with the dimensions m/s. This gives the result (which
could have been written by inspection once it was known that there
could only be one pi-group):

e
I1; = 5 = fn (no other groups) = constant
MoCh
or
e = constant - (moc§>

Of course, it required Einstein's relativity theory to tell us that the
constant is unity. |

Example 4.5

What is the velocity of efflux of liquid from the tank shown in Fig. 4.4?

SOLUTION. In this case we can guess that the velocity, V, might de-
pend on gravity, g, and the head H. We might be tempted to include
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Figure 4.4 Efflux of liquid
from a tank.

the density as well until we realize that g is already a force per unit
mass. Tounderstand this, we can use English units and divide g by the
conversion factor,* g.. Thus (g ft/s?)/(gc Ibm-ft/Ibs s2) = g Ib¢/lbp.
Then

\% =fn[H, g ]
— — =
m/s m m/s?

so there are three variables in two dimensions, and we look for 3—-2 =
1 pi-groups. It would have to be

[T, = —= = fn (no other pi-groups) = constant
or

V = constant - \\gH

The analytical study of fluid mechanics tells us that this form is
correct and that the constant is /2. The group V?/gh, by the way, is
called a Froude number, Fr (pronounced “Frood”). It compares inertial
forces to gravitational forces. Fr is about 1000 for a pitched baseball,
and it is between 1 and 10 for the water flowing over the spillway of
a dam. |

40One can always divide any variable by a conversion factor without changing it.
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Example 4.6

Obtain the dimensionless functional equation for the temperature
distribution during steady conduction in a slab with a heat source, 4.

SOLUTION. In such a case, there might be one or two specified tem-
peratures in the problem: T; or T»>. Thus the dimensional functional
equation is

T-Ti=t|(T>,-T1),x,L, g , k , h
— —_— Y
K K m W/m? W/m-K W/m?K

where we presume that a convective b.c. is involved and we identify a
characteristic length, L, in the x-direction. There are seven variables
in three dimensions, or 7 — 3 = 4 pi-groups. Three of these groups
are ones we have dealt with in the past in one form or another:

M = T-T dimensionless temperature, which we
L shall give the name ©
Il = % dimensionless length, which we call €
hL . . . .
I3 = — which we recognize as the Biot number, Bi

k

The fourth group is new to us:

L = (ZLZ which compares the heat generation rate to
4= k(T> — T;) therate of heat loss; we call it I

Thus, the solution is

® = fn (§,Bi,T) (4.17)
[ |

In Example 2.1, we undertook such a problem, but it differed in two
respects. There was no convective boundary condition and hence, no h,
and only one temperature was specified in the problem. In this case, the
dimensional functional equation was

(T-T,) =fn(x,L,q,k)

so there were only five variables in the same three dimensions. The re-
sulting dimensionless functional equation therefore involved only two
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pi-groups. One was & = x/L and the other is a new one equal to ©/T. We
call it ¢:

_I-T _ (E)
b = al2/k =fn T (4.18)

And this is exactly the form of the analytical result, eqn. (2.15).

Finally, we must deal with dimensions that convert into one another.
For example, kg and N are defined in terms of one another through New-
ton’s Second Law of Motion. Therefore, they cannot be identified as sep-
arate dimensions. The same would appear to be true of J and N-m, since
both are dimensions of energy. However, we must discern whether or
not a mechanism exists for interchanging them. If mechanical energy
remains distinct from thermal energy in a given problem, then J should
not be interpreted as N-m.

This issue will prove important when we do the dimensional anal-
ysis of several heat transfer problems. See, for example, the analyses
of laminar convection problem at the beginning of Section 6.4, of natu-
ral convection in Section 8.3, of film condensation in Section 8.5, and of
pool boiling burnout in Section 9.3. In all of these cases, heat transfer
normally occurs without any conversion of heat to work or work to heat
and it would be misleading to break J into N-m.

Additional examples of dimensional analysis appear throughout this
book. Dimensional analysis is, indeed, our court of first resort in solving
most of the new problems that we undertake.

4.4 Anillustration of the use of dimensional analysis
in a complex steady conduction problem

Heat conduction problems with convective boundary conditions can rap-
idly grow difficult, even if they start out simple, and so we look for ways
to avoid making mistakes. For one thing, it is wise to take great care
that dimensions are consistent at each stage of the solution. The best
way to do this, and to eliminate a great deal of algebra at the same time,
is to nondimensionalize the heat conduction equation before we apply
the b.c.’s. This nondimensionalization should be consistent with the pi-
theorem. We illustrate this idea with a fairly complex example.
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(Ty) \ (T,)

q
h, hy
Solution for Ty # T, but Solution for Ty = T, and
h; = hy, eqn. (4.24) << | x hy =hy, eqn. (4.25)
x=0 x=L
2+ — Physical configuration 2 —

/’Bl—;\\ /f\Bi=10
= . 15} 1
non \ (T—Ty)h / \

aL / \

_ Bi=1
Bi=0 0 / /—\\
Bi =1 _ .5
: I'-o Bi=0
Bi = o

0 |

0 0.5 1

E=x/L £=x/L

Figure 4.5 Heat conduction through a heat-generating slab
with asymmetric boundary conditions.

Example 4.7

A slab shown in Fig. 4.5 has different temperatures and different heat
transfer coefficients on either side and the heat is generated within
it. Calculate the temperature distribution in the slab.

SOLUTION. The differential equation is

a’T _ 4
dx?2  k
and the general solution is
gx*°
T=-—""—+Cix+( (4.19)

2k
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with b.c.’s

- ar — aT
hi(Ty = T)x=0 = —k —— , (T =To)x-1 = -k —— :
dx x=0 dx x=L

(4.20)
There are eight variables involved in the problem: (T — 1), (T1 — T>),

x, L, k, h1, h2, and g; and there are three dimensions: K, W, and m.
This results in 8 — 3 = 5 pi-groups. For these we choose

o T-T . X o il
. hoL 1L’
H4EB12=%, and H5Er=m,

where I' can be interpreted as a comparison of the heat generated in
the slab to that which could flow through it.
Under this nondimensionalization, eqn. (4.19) becomes®

O@=-TE +C3E+Cy (4.21)
and b.c.’s become
Biy (1 - Og—¢) = —®’§:0, Bi2Og_; = —@’Ezl (4.22)
where the primes denote differentiation with respect to €. Substitut-
ing eqn. (4.21) in eqn. (4.22), we obtain
Bii (1 — C4) = —C3, Bio (-T'+ C3 + C4) = 2I' — Cs. (4.23)
Substituting the first of egns. (4.23) in the second we get
—Biy + 2(Bi; /Bip)T" + Bi;T
Bi; + Bi$/Bi, + Bi?

Ci=1+

(3 =Bii(C4 - 1)
Thus, eqn. (4.21) becomes

2(Biy /Biy) + Bi 2(Biy /Biy) + Bi
®—1+r|2¢ 11./ 12.) e g2, ¢ ( 11/.212). 11.2
1 + Bi;/Biz + Bi; Bi; + Bi{/Bi2 + Bij
Bi; Bi;
- o —G — 4.24
1 +Biy/Biz +Biy °  Bij + Bi%/Biy + Bi3 ( .)

>The rearrangement of the dimensional equations into dimensionless form is
straightforward algebra. If the results shown here are not immediately obvious to
you, sketch the calculation on a piece of paper.
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This is a complicated result and one that would have required enormous
patience and accuracy to obtain without first simplifying the problem
statement as we did. If the heat transfer coefficients were the same on
either side of the wall, then Bi; = Bi» = Bi, and eqn. (4.24) would reduce
to

£+ 1/Bi

@:1+r(§—§2+1/131)—I:—zﬁﬁ

(4.25)
which is a very great simplification.

Equation (4.25) is plotted on the left-hand side of Fig. 4.5 for Bi equal
to 0, 1, and o and for I equal to 0, 0.1, and 1. The following features
should be noted:

e When T « 0.1, the heat generation can be ignored.

e WhenT > 1,0 — I'/Bi + I'(§ — £2). This is a simple parabolic tem-
perature distribution displaced upward an amount that depends on
the relative external resistance, as reflected in the Biot number.

e If both I and 1/Bi become large, ® — I'/Bi. This means that when
internal resistance is low and the heat generation is great, the slab
temperature is constant and quite high.

If T> were equal to T; in this problem, I' would go to infinity. In such
a situation, we should redo the dimensional analysis of the problem. The
dimensional functional equation now shows (T — T7) to be a function of
x, L, k, h, and ¢q. There are six variables in three dimensions, so there
are three pi-groups

T-T
qL/h

= fn (&, Bi)

where the dependent variable is like & [recall eqn. (4.18)] multiplied by
Bi. We can put eqn. (4.25) in this form by multiplying both sides of it by

h(T1 — T»)/48. The result is
E(T - Tl) _ 1 . 2 l
A—Ef—f_zm(g §)+2 (4.26)

The result is plotted on the right-hand side of Fig. 4.5. The following
features of the graph are of interest:

e Heat generation is the only “force” giving rise to temperature nonuni-
formity. Since it is symmetric, the graph is also symmetric.
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e When Bi <« 1, the slab temperature approaches a uniform value
equal to Ty + gL/2h. (In this case, we would have solved the prob-
lem with far greater ease by using a simple lumped-capacity heat
balance, since it is no longer a heat conduction problem.)

e When Bi > 100, the temperature distribution is a very large parabola
with ¥ added to it. In this case, the problem could have been solved
using boundary conditions of the first kind because the surface
temperature stays very close to T (recall Fig. 1.11).

4.5 Fin design
The purpose of fins

The convective removal of heat from a surface can be substantially im-
proved if we put extensions on that surface to increase its area. These
extensions can take a variety of forms. Figure 4.6, for example, shows
many different ways in which the surface of commercial heat exchanger
tubing can be extended with protrusions of a kind we call fins.

Figure 4.7 shows another very interesting application of fins in a heat
exchanger design. This picture is taken from an issue of Science maga-
zine [4.5], which presents an intriguing argument by Farlow, Thompson,
and Rosner. They offered evidence suggesting that the strange rows of
fins on the back of the Stegosaurus were used to shed excess body heat
after strenuous activity, which is consistent with recent suspicions that
Stegosaurus was warm-blooded.

These examples involve some rather complicated fins. But the analy-
sis of a straight fin protruding from a wall displays the essential features
of all fin behavior. This analysis has direct application to a host of prob-
lems.

Analysis of a one-dimensional fin

The equations. Figure 4.8 shows a one-dimensional fin protruding from
awall. The wall—and the roots of the fin—are at a temperature Ty, which
is either greater or less than the ambient temperature, To. The length
of the fin is cooled or heated through a heat transfer coefficient, h, by
the ambient fluid. The heat transfer coefficient will be assumed uniform,
although (as we see in Part III) that can introduce serious error in boil-



a) Eight examples of externally finned tubing.
1) and 2) Typical commercial circular fins of constant thickness;
3) and 4) Serrated circular fins and dimpled spirally-wound circular fins, both intended to improve
convection.
5) Spirally-wound copper coils outside and inside.
6) and 8) Bristle fins, spirally wound and machined from base metal.
7) A spirally indented tube to improve convection as well as to increase surface area.

b} An array of commercial internally finned tubing (photo courtesy of Noranda Metal Industries, Inc.)

Figure 4.6 Some of the many varieties of finned tubes.
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Daniel Rosner).

ing, condensing, or other natural convection situations, and will not be
strictly accurate even in forced convection.

The tip may or may not exchange heat with the surroundings through
a heat transfer coefficient, h;, which would generally differ from h. The
length of the fin is L, its uniform cross-sectional area is A, and its cir-
cumferential perimeter is P.

The characteristic dimension of the fin in the transverse direction
(normal to the x-axis) is taken to be A/P. Thus, for a circular cylindrical
fin, A/P = 1r(radius)?/ (27 radius) = (radius/2). We define a Biot num-
ber for conduction in the transverse direction, based on this dimension,
and require that it be small:

_ h(A/P)
= 7,( <

This condition means that the transverse variation of T at any axial po-
sition, x, is much less than (Tgyrface — T ). Thus, T =~ T(x only) and the

Bifin 1 (4.27)

Figure 4.7 The Stegosaurus with what
might have been cooling fins (etching by
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85Q = h(Pox) [T(x)—Teo ] SQEL

/ N

T{x=0)=T,

Perimeter, P

Figure 4.8 The analysis of a one-dimensional fin.

heat flow can be treated as one-dimensional.
An energy balance on the thin slice of the fin shown in Fig. 4.8 gives

_ka 4L +ka 4L +h(PSx)(T - Te)x =0 (4.28)
ax | x+sx dx |x
but
dT/dx|xisx — dT/dx|y  d°T  d*(T — Tw) (4.29)
Sx dx? dx? '
SO
d*(T - T) _hP
= kj(T — Tw) (4.30)
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The b.c.’s for this equation are

_ _ 4.31a
4 4T - Tw) ~ AT = To)aey ( )
dx x=L

-k
Alternatively, if the tip is insulated, or if we can guess that h; is small
enough to be unimportant, the b.c.’s are

AT - Tw)

(T— TOO)X:() = T() —Ts» and
dx

=0 (4.31b)

x=L

Before we solve this problem, it will pay to do a dimensional analysis of
it. The dimensional functional equation is

T—nzmﬂn—manmﬁRmﬂ (4.32)

Notice that we have written kA, hP, and h; A as single variables. The
reason for doing so is subtle but important. Setting h(A/P)/k <« 1,
erases any geometric detail of the cross section from the problem. The
only place where P and A enter the problem is as product of k, h, orh;.
If they showed up elsewhere, they would have to do so in a physically
incorrect way. Thus, we have just seven variables in W, K, and m. This
gives four pi-groups if the tip is uninsulated:

T-To g |x [RP, AL
To — Teo L'Vk kA
—

=ELL/k

or if we rename the groups,

where we call VhPL?2/kA = mL because that terminology is common in
the literature on fins.

If the tip of the fin is insulated, h; will not appear in eqn. (4.32). There
is one less variable but the same number of dimensions; hence, there will
be only three pi-groups. The one that is removed is Biaxial, which involves
h;. Thus, for the insulated fin,

0 =fn(g, mL) (4.33b)
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We put eqn. (4.30) in these terms by multiplying it by L?/(Ty — T). The
result is

2
ZE? = (mL)%0 (4.34)

This equation is satisfied by ® = Ce*("L)¢, The sum of these two solu-
tions forms the general solution of eqn. (4.34):

0@ = C1e™LE 4 Cre™MLE (4.35)

Temperature distribution in a one-dimensional fin with the tip insu-
lated The b.c.’s [eqn. (4.31b)] can be written as

e
Or_g=1 and ——= =0 (4.36)
&=0 de 1

Substituting eqn. (4.35) into both eqns. (4.36), we get

Ci+Co=1 and Cie™ —Cre ™l =0 (4.37)

Mathematical Digression 4.1

To put the solution of eqn. (4.37) for C; and C»> in the simplest form,
we need to recall a few properties of hyperbolic functions. The four basic
functions that we need are defined as

] eX —e™X
sinhx = ————
2

eX +e X

coshx = —
tanh x = sinh x ¥ —e X (4.38)

~ coshx exX 4 X

eX +e X

cothx = ———

eX — e—X

where x is the independent variable. Additional functions are defined
by analogy to the trigonometric counterparts. The differential relations
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can be written out formally, and they also resemble their trigonometric
counterparts.

isinhx = l[e" - (—e”‘)] = coshx

i{x f (4.39)
- _ - X _ =X _ s
dx coshx = > [e + (—e )] = sinhx

These are analogous to the familiar results, dsinx/dx = cosx and
dcosx/dx = — sin x, but without the latter minus sign.

The solution of egns. (4.37) is then

e—mL e—mL

C1= 2 coshmlL and Gz =1- 2 coshmlL (4.40
Therefore, eqn. (4.35) becomes
o e ™MLU-8) 1 (2 coshmlL)e ™MLE — g~mLU+E)
B 2 coshmlL
which simplifies to
6 = coshmL(1 - §) (4.41)
coshmlL

for a one-dimensional fin with its tip insulated.

One of the most important design variables for a fin is the rate at
which it removes (or delivers) heat the wall. To calculate this, we write
Fourier’s law for the heat flow into the base of the fin:°

A(T — Tw)
= —kA ———— 4.42
Q dx o ( )
We multiply eqn. (4.42) by L/kA(Typ — T ) and obtain, after substituting
eqgn. (4.41) on the right-hand side,

QL sinhmlL

m m coshml = mLtanhmL (443)

6We could also integrate h(T — T.,) over the outside area of the fin to get Q. The
answer would be the same, but the calculation would be a little more complicated.
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8

i 1.0 I T T 1.0
| -
° I~ — i

ol E [

<« — Heat flow cannot be —

Ii noticeably improved

E=

— by lengthening the -~
fin beyond L=3/m

1
05— — —05
cosh mL

The temperature

excess at the tip

is less than 1.4%,
tanh mL beyond L=5/m

Dimensionless temperature at tip, 95

Dimensionless heat flow into the fin,

mL

I I

05

mL=5

{a long “‘over

designed”’ fin) l
1

Dimensionless temp., ©

0 0.2 0.4 0.6 0.8 10

Dimensionless axial position, £=x/L

Figure 4.9 The temperature distribution, tip temperature, and
heat flux in a straight one-dimensional fin with the tip insulated.

which can be written

Q
VKARP(Ty — Ts)

Figure 4.9 includes two graphs showing the behavior of one-dimen-
sional fin with an insulated tip. The top graph shows how the heat re-
moval increases with mL to a virtual maximum at mL ~ 3. This means
that no such fin should have a length in excess of 2/m or 3/m if it is be-
ing used to cool (or heat) a wall. Additional length would simply increase
the cost without doing any good.

Also shown in the top graph is the temperature of the tip of such a
fin. Setting & = 1 in eqn. (4.41), we discover that

1
coshmlL

= tanhmL (4.44)

Oup = (4.45)
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This dimensionless temperature drops to about 0.014 at the tip when mL
reaches 5. This means that the end is 0.014(Ty — T ) K above T« at the
end. Thus, if the fin is actually functioning as a holder for a thermometer
or a thermocouple that is intended to read T, the reading will be in error
if mL is not significantly greater than five.

The lower graph in Fig. 4.9 hows how the temperature is distributed
in insulated-tip fins for various values of mL.

Experiment 4.1

Clamp a 20 cm or so length of copper rod by one end in a horizontal
position. Put a candle flame very near the other end and let the arrange-
ment come to a steady state. Run your finger along the rod. How does
what you feel correspond to Fig. 4.9? (The diameter for the rod should
not exceed about 3 mm. A larger rod of metal with a lower conductivity
will also work.)

Exact temperature distribution in a fin with an uninsulated tip. The
approximation of an insulated tip may be avoided using the b.c’s given
in eqn. (4.31a), which take the following dimensionless form:

@gzo =1 and - d7® = Biax(ag:l (4.46)
a& £-1
Substitution of the general solution, eqn. (4.35), in these b.c.’s yields
C+C =1

4.47
—mL(Cie™L — Cre ML) = Big (Cre™L + Cre™L) ( )

It requires some manipulation to solve eqn. (4.47) for C; and C> and to
substitute the results in eqn. (4.35). We leave this as an exercise (Problem
4.11). The result is

coshmL(1 — &) + (Bigx/mL) sinhmL(1 — &)
coshmL + (Bigx/mL) sinhmL

0= (4.48)

which is the form of eqn. (4.33a), as we anticipated. The corresponding
heat flux equation is

(Bigx/mL) + tanh mL

Q _
(kA)(RP) (Ty — To) 1+ (Blax/mL) tanhmlL

(4.49)
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We have seen that mL is not too much greater than unity in a well-
designed fin with an insulated tip. Furthermore, when h; is small (as it
might be in natural convection), Biyx is normally much less than unity.
Therefore, in such cases, we expect to be justified in neglecting terms
multiplied by Biax. Then egn. (4.48) reduces to

® = coshmL(1 - &)
~ coshmlL

(4.41)

which we obtained by analyzing an insulated fin.

It is worth pointing out that we are in serious difficulty if h; is so
large that we cannot assume the tip to be insulated. The reason is that
hy is nearly impossible to predict in most practical cases.

Example 4.8

A 2 cm diameter aluminum rod with k = 205 W/m-K, 8 cm in length,
protrudes from a 150°C wall. Air at 26°C flows by it, and h = 120
W/m2K. Determine whether or not tip conduction is important in this
problem. To do this, make the very crude assumption that h =~ hj.
Then compare the tip temperatures as calculated with and without
considering heat transfer from the tip.

SOLUTION.
hPL2 120(0.08)2
L = = = .
m kA 205(0.01/2) _ 0-86°6
. hL 120(0.08) _
Biay = % - 205 0.0468

Therefore, eqn. (4.48) becomes

cosh 0 + (0.0468/0.8656) sinh 0
cosh(0.8656) + (0.0468/0.8656) sinh(0.8656)

1
~ 1.3986 + 0.0529 0.6886

©(&=1) =0up =

so the exact tip temperature is

Tip = Teo + 0.6886(T) — Teo)
— 26 + 0.6886(150 — 26) = 111.43°C
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Equation (4.41) or Fig. 4.9, on the other hand, gives

L
1.3986

so the approximate tip temperature is

Orip = — 0.7150

Tiip = 26 + 0.715(150 — 26) = 114.66°C

Thus the insulated-tip approximation is adequate for the computation
in this case. |

Very long fin. If a fin is so long that mL > 1, then eqn. (4.41) becomes

limit ® = limit =

mL = oo ML= oo emL 4 o-mL emlL
or
limit @ = e ™LE (4.50)
mL—large

Substituting this result in eqn. (4.42), we obtain [cf. eqn. (4.44)]

Q =\ (kARP) (Ty — Tw) (4.51)

A heating or cooling fin would have to be terribly overdesigned for these
results to apply—that is, mL would have been made much larger than
necessary. Very long fins are common, however, in a variety of situations
related to undesired heat losses. In practice, a fin may be regarded as
“infinitely long” in computing its temperature if mL 2 5; in computing
Q, mL = 3 is sufficient for the infinite fin approximation.

Physical significance of mL. The group mL has thus far proved to be
extremely useful in the analysis and design of fins. We should therefore
say a brief word about its physical significance. Notice that

(mL)? = L/kA  internal resistance in x-direction
a 1/h(PL) B gross external resistance

Thus (mL)? is a hybrid Biot number. When it is big, ®|z_; — 0 and we
can neglect tip convection. When it is small, the temperature drop along
the axis of the fin becomes small (see the lower graph in Fig. 4.9).
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The group (mL)? also has a peculiar similarity to the NTU (Chapter
3) and the dimensionless time, t/ T, that appears in the lumped-capacity
solution (Chapter 1). Thus,

h(PL) . .. -
KA/L is like Cor is like PVt

In each case a convective heat rate is compared with a heat rate that
characterizes the capacity of a system; and in each case the system tem-
perature asymptotically approaches its limit as the numerator becomes
large. This was true in eqn. (1.22), eqn. (3.21), eqn. (3.22), and eqn. (4.50).

The problem of specifying the root temperature

Thus far, we have assmed the root temperature of a fin to be given infor-
mation. There really are many circumstances in which it might be known;
however, if a fin protrudes from a wall of the same material, as sketched
in Fig. 4.10a, it is clear that for heat to flow, there must be a temperature
gradient in the neighborhood of the root.

Consider the situation in which the surface of a wall is kept at a tem-
perature T;. Then a fin is placed on the wall as shown in the figure. If
T < Ts, the wall temperature will be depressed in the neighborhood of
the root as heat flows into the fin. The fin’s performance should then be
predicted using the lowered root temperature, Troot-

This heat conduction problem has been analyzed for several fin ar-
rangements by Sparrow and co-workers. Fig. 4.10b is the result of Spar-
row and Hennecke’s [4.6] analysis for a single circular cylinder. They
give

1 Qactual _ Ts — Troot - fn |:h1’, (mr) tanh(mL)] (4.52)

Qno temp. depression Ts — T k

where 7 is the radius of the fin. From the figure we see that the actual
heat flux into the fin, Qactual, and the actual root temperature are both
reduced when the Biot number, hr /k, is large and the fin constant, m, is
small.

Example 4.9

Neglect the tip convection from the fin in Example 4.8 and suppose
that it is embedded in a wall of the same material. Calculate the error
in Q and the actual temperature of the root if the wall is kept at 150°C.
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Figure 4.10 The influence of heat flow into the root of circular
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SOLUTION. From Example 4.8 we have mL = 0.8656 and hr/k =
120(0.010)/205 = 0.00586. Then, with mr = mL(v /L), we have
(mr) tanh(mL) = 0.8656(0.010/0.080) tanh(0.8656) = 0.0756. The
lower portion of Fig. 4.10b then gives

Qactual _ Ts — Troot _
- = = 0.05
Qno temp. depression Ts — T

1

so the heat flow is reduced by 5% and the actual root temperature is
Troot = 150 — (150 — 26)0.05 = 143.8°C

The correction is modest in this case. |

Fin design

Two basic measures of fin performance are particularly useful in a fin
design. The first is called the efficiency, ns.

actual heat transferred by a fin

= heat that would be transferred if the entire fin were at T = T
(4.53)

ne

To see how this works, we evaluate n¢ for a one-dimensional fin with an
insulated tip:

_ \(RP)(kA)(To — Tw) tanhmL  tanhmL
a W(PL)(Ty — Tw) T mL

ne (4.54)
This says that, under the definition of efficiency, a very long fin will give
tanh(mL)/mL — 1/large number, so the fin will be inefficient. On the
other hand, the efficiency goes up to 100% as the length is reduced to
zero, because tanh(mL) — mL as mIL — 0. While a fin of zero length
would accomplish litte, a fin of small 1 might be designed in order to
keep the tip temperature near the root temperature; this, for example, is
desirable if the fin is the tip of a soldering iron.

It is therefore clear that, while n¢ provides some useful information
as to how well a fin is contrived, it is not generally advisable to design
toward a particular value of ns.

A second measure of fin performance is called the effectiveness, &s:

_ heat flux from the wall with the fin
"~ heat flux from the wall without the fin

&f (4.55)
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This can easily be computed from the efficiency:

surface area of the fin
cross-sectional area of the fin

& = nr (4.56)
Normally, we want the effectiveness to be as high as possible, But this
can always be done by extending the length of the fin, and that—as we
have seen—rapidly becomes a losing proposition.

The measures nf and &r probably attract the interest of designers not
because their absolute values guide the designs, but because they are
useful in characterizing fins with more complex shapes. In such cases
the solutions are often so complex that n¢ and & plots serve as labor-
saving graphical solutions. We deal with some of these curves later in
this section.

The design of a fin thus becomes an open-ended matter of optimizing,
subject to many factors. Some of the factors that have to be considered
include:

e The weight of material added by the fin. This might be a cost factor
or it might be an important consideration in its own right.

 The possible dependence of h on (T — T.), flow velocity past the
fin, or other influences.

e The influence of the fin (or fins) on the heat transfer coefficient, h,
as the fluid moves around it (or them).

e The geometric configuration of the channel that the fin lies in.
e The cost and complexity of manufacturing fins.

e The pressure drop introduced by the fins.

Fin thermal resistance

When fins occur in combination with other thermal elements, it can sim-
plify calculations to treat them as a thermal resistance between the root
and the surrounding fluid. Specifically, for a straight fin with an insulated
tip, we can rearrange eqn. (4.44) as

Q: (T()_Too) = (TO_Too) (457)

(V kAhP tanh mL) ! Rig,
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where
Rtﬁn = N !
VkAhP tanh mL
In general, for a fin of any shape, fin thermal resistance can be written in

terms of fin efficiency and fin effectiveness. From eqns. (4.53) and (4.55),
we obtain

for a straight fin (4.58)

1 1

= — = — (4.59)
Nt Asurfacen &t Arooth

tfin

Example 4.10

Consider again the resistor described in Examples 2.8 and 2.9, start-
ing on page 76. Suppose that the two electrical leads are long straight
wires 0.62 mm in diameter with k = 16 W/m-K and hefr = 23 W/m?2K.
Recalculate the resistor’s temperature taking account of heat con-
ducted into the leads.

SOLUTION. The wires act as very long fins connected to the resistor,
so that tanh mL = 1 (see Prob. 4.44). Each has a fin resistance of

1 1
Rim = 37 ~ V(16)(23) (1)2(0.00062)7 /4

These two thermal resistances are in parallel to the thermal resis-
tances for natural convection and thermal radiation from the resistor
surface found in Example 2.8. The equivalent thermal resistance is
now

= 2,150 K/W

. ~ 1 . 1 N 1 + 1 1
tequiv B Rtﬁn Rtﬁn Rtrad thonv

_ 2 -4 —4 -
= [2’ 150 +(1.33 x107%)(7.17) + (1.33 x 10 )(13)]

= 276.8 K/W

The leads reduce the equivalent resistance by about 30% from the
value found before. The resistor temperature becomes

Tresistor = Tair + Q - Rtequiv =35+ (0.1)(276.8) = 62.68 °C

or about 10°C lower than before. |
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Perimeter, P(x)

Alx+6x)

Figure 4.11 A general fin of variable cross section.

Fins of variable cross section

Let us consider what is involved is the design of a fin for which A and
P are functions of x. Such a fin is shown in Fig. 4.11. We restrict our
attention to fins for which

h(A/P) <1 and d(a/P)

X A(x) <1

so the heat flow will be approximately one-dimensional in x.
We begin the analysis, as always, with the First Law statement:

au
Qnet = Qcond - Qconv = E

7

or
[kA(x+6x) dar — kA(x) dar ]—EP&X(T—TOO)
L ax | x=6x ax | x ;
d ar
= pcA(x)éxE

=0, since steady

“Note that we approximate the external area of the fin as horizontal when we write
it as P 6x. The actual area is negligibly larger than this in most cases. An exception
would be the tip of the fin in Fig. 4.11.
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T=Tg

X
A(x)=25(t)b

x=0

Figure 4.12 A two-dimensional wedge-shaped fin.

Therefore,

d

d(T-Ts)] hP B
dx [A(x)T] ~ 5 (T-Te) =0 (4.60)

If A(x) = constant, this reduces to ®"' — (mL)2® = 0, which is the straight
fin equation.

To see how eqn. (4.60) works, consider the triangular fin shown in
Fig. 4.12. In this case eqn. (4.60) becomes

d[z&(’z)bd(T_T‘”)] - 2Zb(T—Too) -0

dx dx
or
d?e do hL?
i tag ks ©7° “on
—
a kind
of (mL)2

This second-order linear differential equation is difficult to solve because
it has a variable coefficient. Its solution is expressible in Bessel functions:

I, <2\/ELx/k5>
o I, (2\/EL2/k6>

(4.62)
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where the modified Bessel function of the first kind, I,, can be looked up
in appropriate tables.

Rather than explore the mathematics of solving eqn. (4.60), we simply
show the result for several geometries in terms of the fin efficiency, ny,
in Fig. 4.13. These curves were given by Schneider [4.7]. Kraus, Aziz, and
Welty [4.8] provide a very complete discussion of fins and show a great
many additional efficiency curves.

Example 4.11

A thin brass pipe, 3 cm in outside diameter, carries hot water at 85°C.
It is proposed to place 0.8 mm thick straight circular fins on the pipe
to cool it. The fins are 8 cm in diameter and are spaced 2 cm apart. It
is determined that h will equal 20 W/m?K on the pipe and 15 W/m?K
on the fins, when they have been added. If T, = 22°C, compute the
heat loss per meter of pipe before and after the fins are added.

SOLUTION. Before the fins are added,
Q =1 (0.03m)(20 W/mZK)[(SS —22)K] =199 W/m

where we set Twall — Twater Since the pipe is thin. Notice that, since
the wall is constantly heated by the water, we should not have a root-
temperature depression problem after the fins are added. Then we
can enter Fig. 4.13a with

g 15(0.04 — 0.15)3
‘267 and mL\[ kA \/125(0025 1(0.0008) _ 0300

and we obtain nr = 89%. Thus, the actual heat transfer given by

Ouithonc & (0.02—0.0008)
\ without ﬁnl \ 0.02

119 W/m fraction of unfinned area

+0.89[277(0.04% — 0.015%)] (sofms) (15 —) [(85 —22) K]

~

area per fin (both sides), m?

SO

Qnet = 478 W/m = 4.02 Quithout fins |
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Problems

4.1

4.2

4.3

4.4

4.5

4.6

Make a table listing the general solutions of all steady, unidi-
mensional constant-properties heat conduction problemns in
Cartesian, cylindrical and spherical coordinates, with and with-
out uniform heat generation. This table should prove to be a
very useful tool in future problem solving. It should include a
total of 18 solutions. State any restrictions on your solutions.
Do not include calculations.

The left side of a slab of thickness L is kept at 0°C. The right
side is cooled by air at T °C blowing on it. hrys is known. An
exothermic reaction takes place in the slab such that heat is
generated at A(T — T») W/m3, where A is a constant. Find a
fully dimensionless expression for the temperature distribu-
tion in the wall.

A long, wide plate of known size, material, and thickness L is
connected across the terminals of a power supply and serves
as a resistance heater. The voltage, current and T are known.
The plate is insulated on the bottom and transfers heat out
the top by convection. The temperature, Ty, of the botton
is measured with a thermocouple. Obtain expressions for (a)
temperature distribution in the plate; (b) h at the top; (c) tem-
perature at the top. (Note that your answers must depend on
known information only.) [Tiop = Tic — EIL?/(2k - volume)]

The heat tansfer coefficient, h, resulting from a forced flow
over a flat plate depends on the fluid velocity, viscosity, den-
sity, specific heat, and thermal conductivity, as well as on the
length of the plate. Develop the dimensionless functional equa-
tion for the heat transfer coefficient (cf. Section 6.5).

Water vapor condenses on a cold pipe and drips off the bottom
in regularly spaced nodes as sketched in Fig. 3.9. The wave-
length of these nodes, A, depends on the liquid-vapor density
difference, p £ — Pg, the surface tension, o, and the gravity, g.
Find how A varies with its dependent variables.

A thick film flows down a vertical wall. The local film velocity
at any distance from the wall depends on that distance, gravity,
the liquid kinematic viscosity, and the film thickness. Obtain
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4.7

4.8

4.9

4.10

4.11

the dimensionless functional equation for the local velocity (cf.
Section 8.5).

A steam preheater consists of a thick, electrically conduct-
ing, cylindrical shell insulated on the outside, with wet stream
flowing down the middle. The inside heat transfer coefficient
is highly variable, depending on the velocity, quality, and so
on, but the flow temperature is constant. Heat is released at
q J/m3s within the cylinder wall. Evaluate the temperature
within the cylinder as a function of position. Plot ® against
p, where 0 is an appropriate dimensionless temperature and
p =7 /v,. Use p; = 2/3 and note that Bi will be the parameter
of a family of solutions. On the basis of this plot, recommend
criteria (in terms of Bi) for (a) replacing the convective bound-
ary condition on the inside with a constant temperature condi-
tion; (b) neglecting temperature variations within the cylinder.

Steam condenses on the inside of a small pipe, keeping it at
a specified temperature, T;. The pipe is heated by electrical
resistance at arate ¢4 W/m3. The outside temperature is T, and
there is a natural convection heat transfer coefficient, h around
the outside. (a) Derive an expression for the dimensionless
expression temperature distribution, ©® = (T — Tw) /(T; — Tw),
as a function of the radius ratios, p = v/7, and p; = ¥i/7o;
a heat generation number, I' = §r2/k(T; — T»); and the Biot
number. (b) Plot this result for the case p; = 2/3, Bi =1, and
for several values of I'. (c) Discuss any interesting aspects of
your result.

Solve Problem 2.5 if you have not already done so, putting
it in dimensionless form before you begin. Then let the Biot
numbers approach infinity in the solution. You should get the
same solution we got in Example 2.5, using b.c.’s of the first
kind. Do you?

Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31b) and eqn. (4.41).

Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31a) and eqn. (4.48).
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4.12 Obtain eqgn. (4.50) from the general solution for a fin [eqn. (4.35)],
using the b.c.’s T(x = 0) = Tp and T(x = L) = T. Comment
on the significance of the computation.

4.13 What is the minimum length, [, of a thermometer well neces-
sary to ensure an error less than 0.5% of the difference between
the pipe wall temperature and the temperature of fluid flowing
in a pipe? Assume that the fluid is steam at 260°C and that the
coefficient between the steam and the tube wall is 300 W/m?K.
The well consists of a tube with the end closed. It has a 2 cm
0.D. and a 1.88 cm I.D. The material is type 304 stainless steel.
[3.44 cm.]

4.14 Thin fins with a 0.002 m by 0.02 m rectangular cross section
and a thermal conductivity of 50 W/m-K protrude from a wall
and have h ~ 600 W/m?K and Ty = 170°C. What is the heat
flow rate into each fin and what is the effectiveness? T, =
20°C.

4.15 A thin rod is anchored at a wall at T = Ty on one end and is
insulated at the other end. Plot the dimensionless temperature
distribution in the rod as a function of dimensionless length:
(a) if the rod is exposed to an environment at T through a
heat transfer coefficient; (b) if the rod is insulated but heat is
removed from the fin material at the unformrate —g = hP(Tp—
Tw)/A. Comment on the implications of the comparison.

4.16 A tube of outside diameter d, and inside diameter d; carries
fluid at T = T; from one wall at temperature T; to another
wall a distance L away, at T,. Outside the tube h, is negligible,
and inside the tube h; is substantial. Treat the tube as a fin
and plot the dimensionless temperature distribution in it as a
function of dimensionless length.

4.17 (If you have had some applied mathematics beyond the usual
two years of calculus, this problem will not be difficult.) The
shape of the fin in Fig. 4.12 is changed so that A(x) = 26(x/L)%b
instead of 26(x/L)b. Calculate the temperature distribution
and the heat flux at the base. Plot the temperature distribution
and fin thickness against x /L. Derive an expression for ns.
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4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Work Problem 2.21, if you have not already done so, nondi-
mensionalizing the problem before you attempt to solve it. It
should now be much simpler.

Omne end of a copper rod 30 cm long is held at 200°C, and
the other end is held at 93°C. The heat transfer coefficient in
between is 17 W/m?K. If T = 38°C and the diameter of the
rod is 1.25 cm, what is the net heat removed by the air around
the rod? [19.13 W.]

How much error will the insulated-tip assumption give rise to
in the calculation of the heat flow into the fin in Example 4.8?

A straight cylindrical fin 0.6 cm in diameter and 6 cm long
protrudes from a magnesium block at 300°C. Air at 35°C is
forced past the fin so that h is 130 W/m?K. Calculate the heat
removed by the fin, considering the temperature depression of
the root.

Work Problem 4.19 considering the temperature depression in
both roots. To do this, find mL for the two fins with insulated
tips that would give the same temperature gradient at each
wall. Base the correction on these values of mL.

A fin of triangular axial section (cf. Fig. 4.12) 0.1 m in length
and 0.02 m wide at its base is used to extend the surface area
of a mild steel wall. If the wall is at 40°C and heated gas flows
past at 200°C (h = 230 W/m?K), compute the heat removed by
the fin per meter of breadth, b, of the fin. Neglect temperature
distortion at the root.

Consider the concrete slab in Example 2.1. Suppose that the
heat generation were to cease abruptly at time t = 0 and the
slab were to start cooling back toward T,,. Predict T = T, as a
function of time, noting that the initial parabolic temperature
profile can be nicely approximated as a sine function. (Without
the sine approximation, this problem would require the series
methods of Chapter 5.)

Steam condenses in a 2 cm 1.D. thin-walled tube of 99% alu-
minum at 10 atm pressure. There are circular fins of constant
thickness, 3.5 cm in diameter, every 0.5 cm. The fins are 0.8
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4.26

4.27

4.28

4.29

4.30

4.31

mm thick and the heat transfer coefficient h = 6 W/m?K on
the outside. What is the mass rate of condensation if the pipe
is 1.5 m in length, the ambient temperature is 18°C, and h for
condensation is very large? [#i1¢ong = 0.802 kg/hr.]

How long must a copper fin, 0.4 cm in diameter, be if the tem-
perature of its insulated tip is to exceed the surrounding air
temperature by 20% of (Ty — Te)? Tair = 20°C and h = 28
W/m?K.

A 2 cm ice cube sits on a shelf of aluminum rods, 3 mm in
diameter, in a refrigerator at 10°C. How rapidly, in mm/min,
does the ice cube melt through the wires if h between the wires
and the air is 10 W/m2K. (Be sure that you understand the
physical mechanism before you make the calculation.) Check
your result experimentally. hy = 333,300 J/kg.

The highest heat flux that can be achieved in nucleate boil-
ing (called gmax—see the qualitative discussion in Section 9.1)
depends upon pg, the saturated vapor density; hy,, the la-
tent heat vaporization; o, the surface tension; a characteristic
length, I; and the gravity force per unit volume, g(ps — py),
where py is the saturated liquid density. Develop the dimen-
sionless functional equation for gmax in terms of dimension-
less length.

You want to rig a handle for a door in the wall of a furnace.
The door is at 160°C. You consider bending a 16 in. length
of % in. mild steel rod into a U-shape and welding the ends to
the door. Surrounding air at 24°C will cool the handle (h = 12
W/m?K). What is the coolest temperature of the handle? How
close to the door can you grasp it without being burned? How

might you improve the handle?

A 14 cm long by 1 cm square brass rod is supplied with 25 W at
its base. The other end is insulated. It is cooled by air at 20°C,
with h = 68 W/m?K. Develop a dimensionless expression for
O as a function of & and other known information. Calculate
the base temperature.

A cylindrical fin has a constant imposed heat flux of g, at one
end and g at the other end, and it is cooled convectively along
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4.32

4.33

4.34

4.35

4.36

4.37

4.38

its length. Develop the dimensionless temperature distribu-
tion in the fin. Specialize this result for g = 0 and L — o0, and
compare it with egn. (4.50).

A thin metal cylinder of radius 7, serves as an electrical re-
sistance heater. The temperature along an axial line in one
side is kept at T;. Another line, 0> radians away, is kept at
T>. Develop dimensionless expressions for the temperature
distributions in the two sections.

Heat transfer is augmented, in a particular heat exchanger,
with a field of 0.007 m diameter fins protruding 0.02 m into a
flow. The fins are arranged in a hexagonal array, with a mini-
mum spacing of 1.8 cm. The fins are bronze, and Ef around
the fins is 168 W/m2K. On the wall itself, h, is only 54 W/m?K.
Calculate he for the wall with its fins. (heff = Qwan divided by
Awan and [Tyan — Teol.)

Evaluate d(tanh x)/dx.

An engineer seeks to study the effect of temperature on the
curing of concrete by controlling the temperature of curing in
the following way. A sample slab of thickness L is subjected
to a heat flux, g, on one side, and it is cooled to temperature
T, on the other. Derive a dimensionless expression for the
steady temperature in the slab. Plot the expression and offer
a criterion for neglecting the internal heat generation in the
slab.

Develop the dimensionless temperature distribution in a spher-
ical shell with the inside wall kept at one temperature and the
outside wall at a second temperature. Reduce your solution
to the limiting cases in which ¥gutside > 7inside and in which
Toutside 1S Very close to 7ingige. Discuss these limits.

Does the temperature distribution during steady heat transfer
in an object with b.c.’s of only the first kind depend on k?
Explain.

A long, 0.005 m diameter duralumin rod is wrapped with an
electrical resistor over 3 cm of its length. The resistor imparts
a surface flux of 40 kW/m?2. Evaluate the temperature of the
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4.39

4.40

4.41

4.42

rod in either side of the heated section if h = 150 W/m2K
around the unheated rod, and Tambient = 27°C.

The heat transfer coefficient between a cool surface and a satu-
rated vapor, when the vapor condenses in a film on the surface,
depends on the liquid density and specific heat, the tempera-
ture difference, the buoyant force per unit volume (g [ p F—Pgl),
the latent heat, the liquid conductivity and the kinematic vis-
cosity, and the position (x) on the cooler. Develop the dimen-
sionless functional equation for h.

A duralumin pipe through a cold room has a 4 cm I.D. and a
5 cm O.D. It carries water that sometimes sits stationary. It
is proposed to put electric heating rings around the pipe to
protect it against freezing during cold periods of —7°C. The
heat transfer coefficient outside the pipe is 9 W/m?K. Neglect
the presence of the water in the conduction calculation, and
determine how far apart the heaters would have to be if they
brought the pipe temperature to 40°C locally. How much heat
do they require?

The specific entropy of an ideal gas depends on its specific
heat at constant pressure, its temperature and pressure, the
ideal gas constant and reference values of the temperature and
pressure. Obtain the dimensionless functional equation for
the specific entropy and compare it with the known equation.

A large freezer’s door has a 2.5 cm thick layer of insulation
(kin = 0.04 W/m?2K) covered on the inside, outside, and edges
with a continuous aluminum skin 3.2 mm thick (ka1 = 165
W/m?K). The door closes against a nonconducting seal 1 cm
wide. Heat gain through the door can result from conduction
straight through the insulation and skins (normal to the plane
of the door) and from conduction in the aluminum skin only,
going from the skin outside, around the edge skin, and to the
inside skin. The heat transfer coefficients to the air inside, h;,
and outside, h,, are each 12 W/m?K. The temperature outside
the freezer is 25°C, and the temperature inside is —15°C.

a. If the dooris 1 m wide, estimate the one-dimensional heat
gain through the door, neglecting any conduction around
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4.43

4.44

the edges of the skin. Your answer will be in watts per
meter of door height.

b. Now estimate the heat gain by conduction around the
edges of the door, assuming that the insulation is per-
fectly adiabatic so that all heat flows through the skin.
This answer will also be per meter of door height.

A thermocouple epoxied onto a high conductivity surface is in-
tended to measure the surface temperature. The thermocou-
ple consists of two each bare, 0.51 mm diameter wires. One
wire is made of Chromel (Ni-10% Cr with ko = 17 W/m-K) and
the other of constantan (Ni-45% Cu with k., = 23 W/m-K). The
ends of the wires are welded together to create a measuring
junction having has dimensions of D,, by 2D,,. The wires ex-
tend perpendicularly away from the surface and do not touch
one another. A layer of epoxy (kep = 0.5 W/m-K separates
the thermocouple junction from the surface by 0.2 mm. Air
at 20°C surrounds the wires. The heat transfer coefficient be-
tween each wire and the surroundings is h = 28 W/m?K, in-
cluding both convection and radiation. If the thermocouple
reads Ty = 40°C, estimate the actual temperature T of the
surface and suggest a better arrangement of the wires.

The resistor leads in Example 4.10 were assumed to be “in-
finitely long” fins. What is the minimum length they each must
have if they are to be modelled this way? What are the effec-
tiveness, &r, and efficiency, ny, of the wires?
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5. Transient and multidimensional
heat conduction

When I was a lad, winter was really cold. It would get so cold that if you
went outside with a cup of hot coffee it would freeze. I mean it would freeze
fast. That cup of hot coffee would freeze so fast that it would still be hot
after it froze. Now that’s cold! Old North-woods tall-tale

5.1 Introduction

James Watt, of course, did not invent the steam engine. What he did do
was to eliminate a destructive transient heating and cooling process that
wasted a great amount of energy. By 1763, the great puffing engines of
Savery and Newcomen had been used for over half a century to pump the
water out of Cornish mines and to do other tasks. In that year the young
instrument maker, Watt, was called upon to renovate the Newcomen en-
gine model at the University of Glasgow. The Glasgow engine was then
being used as a demonstration in the course on natural philosophy. Watt
did much more than just renovate the machine—he first recognized, and
eventually eliminated, its major shortcoming.

The cylinder of Newcomen’s engine was cold when steam entered it
and nudged the piston outward. A great deal of steam was wastefully
condensed on the cylinder walls until they were warm enough to accom-
modate it. When the cylinder was filled, the steam valve was closed and
jets of water were activated inside the cylinder to cool it again and con-
dense the steam. This created a powerful vacuum, which sucked the
piston back in on its working stroke. First, Watt tried to eliminate the
wasteful initial condensation of steam by insulating the cylinder. But
that simply reduced the vacuum and cut the power of the working stroke.

193
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Then he realized that, if he led the steam outside to a separate condenser,
the cylinder could stay hot while the vacuum was created.

The separate condenser was the main issue in Watt’s first patent
(1769), and it immediately doubled the thermal efficiency of steam en-
gines from a maximum of 1.1% to 2.2%. By the time Watt died in 1819, his
invention had led to efficiencies of 5.7%, and his engine had altered the
face of the world by powering the Industrial Revolution. And from 1769
until today, the steam power cycles that engineers study in their ther-
modynamics courses are accurately represented as steady flow—rather
than transient—processes.

The repeated transient heating and cooling that occurred in New-
comen’s engine was the kind of process that today’s design engineer
might still carelessly ignore, but the lesson that we learn from history
is that transient heat transfer can be of overwhelming importance. To-
day, for example, designers of food storage enclosures know that such
systems need relatively little energy to keep food cold at steady condi-
tions. The real cost of operating them results from the consumption
of energy needed to bring the food down to a low temperature and the
losses resulting from people entering and leaving the system with food.
The transient heat transfer processes are a dominant concern in the de-
sign of food storage units.

We therefore turn our attention, first, to an analysis of unsteady heat
transfer, beginning with a more detailed consideration of the lumped-
capacity system that we looked at in Section 1.3.

5.2 Lumped-capacity solutions

We begin by looking briefly at the dimensional analysis of transient con-
duction in general and of lumped-capacity systems in particular.

Dimensional analysis of transient heat conduction

We first consider a fairly representative problem of one-dimensional tran-
sient heat conduction:

ic: T(t=0)=T;

2 _ o
o°T 10T with 1Pci Tt>0x=0)=T
ox2 oot oT B
b.c. —k— =h(T-T1)x-L
0X | x=L
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The solution of this problem must take the form of the following dimen-
sional functional equation:

T-T =fn|(T; - T1),x,Lt o hk|

There are eight variables in four dimensions (K, s, m, W), so we look for
8—4 = 4 pi-groups. We anticipate, from Section 4.3, that they will include

_(T'-Ty) _X .:@
®_7(Ti—Tl)’ E_L, and Bi = k’
and we write
0 =fn (&,Bi,I) (5.1)

One possible candidate for I14, which is independent of the other three,
is

[y = Fo = ot /L2 (5.2)

where Fo is the Fourier number. Another candidate that we use later is

I = <this is exactly § ) (5.3)

o X £
NG JVFo
If the problem involved only b.c.’s of the first kind, the heat transfer

coefficient, h—and hence the Biot number—would go out of the problem.
Then the dimensionless function eqn. (5.1) is

O = fn (&,Fo) (5.4)

By the same token, if the b.c.’s had introduced different values of h at
x = 0 and x = L, two Biot numbers would appear in the solution.

The lumped-capacity problem is particularly interesting from the stand-

point of dimensional analysis [see eqns. (1.19)-(1.22)]. In this case, nei-
ther k nor x enters the problem because we do not retain any features
of the internal conduction problem. Therefore, we have pc rather than
«. Furthermore, we do not have to separate p and c because they only
appear as a product. Finally, we use the volume-to-external-area ratio,
V /A, as a characteristic length. Thus, for the transient lumped-capacity
problem, the dimensional equation is

T - T :fn[(Ti—Toc),pc,V/A,E, t] (5.5)
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Figure 5.1 A simple

(o}
1
resistance-capacitance circuit.

Capacitance, C
.

E,— —

LAY

Resistance, R

With six variables in the dimensions J, K, m, and s, only two pi-groups
will appear in the dimensionless function equation.

® = fn (;‘fé) —fn (%) (5.6)

This is exactly the form of the simple lumped-capacity solution, eqn. (1.22).
Notice, too, that the group t/T can be viewed as

t _ hk(V/A)t _h(V/A)  «t

T pc(V/A2k  k (V/A)?2

= BiFo (5.7)

Electrical and mechanical analogies to the
lumped-thermal-capacity problem

The term capacitance is adapted from electrical circuit theory to the heat
transfer problem. Therefore, we sketch a simple resistance-capacitance
circuit in Fig. 5.1. The capacitor is initially charged to a voltage, E,. When
the switch is suddenly opened, the capacitor discharges through the re-
sistor and the voltage drops according to the relation

dE E _
dt  RC
The solution of eqn. (5.8) with the i.c. E(t = 0) = E, is

0 (5.8)

E = E, e t/RC (5.9)

and the current can be computed from Ohm’s law, once E(t) is known.

I= R (5.10)

Normally, in a heat conduction problem the thermal capacitance,
pcV, is distributed in space. But when the Biot number is small, T (t)
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is uniform in the body and we can lump the capacitance into a single
circuit element. The thermal resistance is 1/hA, and the temperature
difference (T — Tw) is analogous to E(t). Thus, the thermal response,
analogous to eqn. (5.9), is [see eqn. (1.22)]

hAt
T—Tew=(Ti—Tx)e -——
(T; ) exXp ( 0 CV)
Notice that the electrical time constant, analogous to pcV/hA,is RC.
Now consider a slightly more complex system. Figure 5.2 shows a
spring-mass-damper system. The well-known response equation (actu-
ally, a force balance) for this system is
d’x dx

%where k is analogous to 1/C or to hA
the damping coefficient is analogous to R or to pcV

What is the mass analogous to?

A term analogous to mass would arise from electrical inductance, but we

e L L LLLLLL L

3 Forcing function
% Mass \\\ F=F(t) Newtons
m{kg)

Damping coefficient, c{N-s/m)}
Viscous Figure 5.2 A spring-mass-damper
damper system with a forcing function.

Elastic spring

Spring constant, k(N/m)

N

did not include it in the electrical circuit. Mass has the effect of carrying
the system beyond its final equilibrium point. Thus, in an underdamped
mechanical system, we might obtain the sort of response shown in Fig. 5.3
if we specified the velocity at x = 0 and provided no forcing function.
Electrical inductance provides a similar effect. But the Second Law of
Thermodynamics does not permit temperatures to overshoot their equi-
librium values spontaneously. There are no physical elements analogous
to mass or inductance in thermal systems.
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Figure 5.3 Response of an unforced
spring-mass-damper system with an

initial velocity.

Next, consider another mechanical element that does have a ther-
mal analogy—namely, the forcing function, F. We consider a (massless)
spring-damper system with a forcing function F that probably is time-
dependent, and we ask: “What might a thermal forcing function look
like?”

Lumped-capacity solution with a variable ambient temperature

To answer the preceding question, let us suddenly immerse an object at
a temperature T = T;, with Bi <« 1, into a cool bath whose temperature is
rising as T (t) = T; + bt, where T; and b are constants. Then eqn. (1.20)
becomes

d(T-T;)) T-Ts T-T; - bt

it T T

where we have arbitrarily subtracted T; under the differential. Then

d(T—Ti)+T—Ti_g
dt T T

(5.12)

To solve eqn. (5.12) we must first recall that the general solution of
a linear ordinary differential equation with constant coefficients is equal
to the sum of any particular integral of the complete equation and the
general solution of the homogeneous equation. We know the latter; it
is T — T; = (constant) exp(—t/T). A particular integral of the complete
equation can often be formed by guessing solutions and trying them in
the complete equation. Here we discover that

T —T;=bt-bT
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satisfies eqn. (5.12). Thus, the general solution of eqn. (5.12) is
T-Ti=Ce T +b(t-T) (5.13)

The solution for arbitrary variations of T« (t) is given in Problem 5.52
(see also Problems 5.3, 5.53, and 5.54).

Example 5.1

The flow rates of hot and cold water are regulated into a mixing cham-
ber. We measure the temperature of the water as it leaves, using a
thermometer with a time constant, T. On a particular day, the sys-
tem started with cold water at T = T; in the mixing chamber. Then
hot water is added in such a way that the outflow temperature rises
linearly, as shown in Fig. 5.4, with Teit low = T; + bt. How will the
thermometer report the temperature variation?

SOLUTION. The initial condition in eqn. (5.13), which describes this
process,is T — T; = 0 at t = 0. Substituting eqn. (5.13) in the i.c., we
get

0=C1—bT SO C1=bT
and the response equation is
T - (T; +bt) = bT (e7t/T - 1) (5.14)

This result is graphically shown in Fig. 5.4. Notice that the ther-
mometer reading reflects a transient portion, bTe~t/T which decays
for a few time constants and then can be neglected, and a steady
portion, T; + b(t — T), which persists thereafter. When the steady re-
sponse is established, the thermometer follows the bath with a tem-
perature lag of bT. This constant error is reduced when either T or
the rate of temperature increase, b, is reduced. |

Second-order lumped-capacity systems

Now we look at situations in which two lumped-thermal-capacity systems
are connected in series. Such an arrangement is shown in Fig. 5.5. Heat is
transferred through two slabs with an interfacial resistance, h; L between
them. We shall require that h.L1/k1, hcLo/ko, and hLp/k> are all much
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T

mperature

bT

o
‘('\x 9=

) x\°“/

Tthermometer

=T +bT(e T+ % -1

Hot T
water =
T=T;—bT - Mixing __l_
chamber e

Figure 5.4 Response of a thermometer to a linearly increasing
ambient temperature.

less than unity so that it will be legitimate to lump the thermal capaci-
tance of each slab. The differential equations dictating the temperature
response of each slab are then

slab 1: —(pcV)l% =h,A(T, — T>) (5.15)
slab 2 : —(pcV)z% = hA(T» — Teo) — he A(T) — T2) (5.16)

and the initial conditions on the temperatures T; and T> are
Ti(t=0)=T(t=0)=T; (5.17)
We next identify two time constants for this problem:!
T, = (pcV)1/hcA and T = (pcV)2/hA
Then eqgn. (5.15) becomes

aT
T, =T, dt +T; (5.18)

INotice that we could also have used (pcV),/h A for T» since both h, and h act on
slab 2. The choice is arbitrary.
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VAN

T

Ty

T2
\\ T2

o
=T T

V////4/ \\\\\\\\\ x - 0 Time, t -

Insulated wall

Figure 5.5 Two slabs conducting in series through an interfa-
cial resistance.

which we substitute in eqn. (5.16) to get

daT; ) E daT; _ dZTl dT,
(T1 i +T1 —Te | + 0 T T T T> PTE T> i
or
dZTl 1 1 hc dTl Tl - Too
z -1 — b — 4 = =0 5.19
dt? * |: T - T> * hT, | dt - T 1> ( )
< ) —_—

~

Eb C(Tl — Too)
if we call T1 — T = 6, then egn. (5.19a) can be written as

d?o ae
W—l—ba+c9—0 (519]3)
Thus we have reduced the pair of first-order equations, eqn. (5.15) and
eqn. (5.16), to a single second-order equation, eqn. (5.19b).
The general solution of eqn. (5.19b) is obtained by guessing a solution
of the form 6 = C;eP!. Substitution of this guess into eqn. (5.19b) gives

D2+bD+c=0 (5.20)

from which we find that D = —(b/2) = +/(b/2)? — c. This gives us two
values of D, from which we can get two exponential solutions. By adding
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them together, we form a general solution:

2 2
e:cleXp[_@ () }c[g () }
(5.21)

To solve for the two constants we first substitute egn. (5.21) in the
first of i.c.’s (5.17) and get

Ti —Te = 91‘ =C1+(Co (5.22)
The second i.c. can be put into terms of T; with the help of eqn. (5.15):
== = T — T2) =0 =0
at lio (pc\/)l( 1—T2)t=0

We substitute egn. (5.21) in this and obtain

=[5 <] [ 5B ] e

——
=0;-C1
SO
- o, [—b/z -J(b/2)2-¢ ]
! 2/(bj2)2 = ¢
and

Co - 0. [—b/Z +/(b/2)2 —c}
S BN CYP I

So we obtain at last:

I -To _ 0 _b/2+J(b/22-c | b (b)z_ .

T-To 0 2J/22-c 0| 2 ° C (5.23)

- 2 5.23

L b2+ B2 -c | b (b)z_c
2JBiZ-c |72

This is a pretty complicated result—all the more complicated when
we remember that b involves three algebraic terms [recall eqn. (5.19a)].
Yet there is nothing very sophisticated about it; it is easy to understand.
A system involving three capacitances in series would similarly yield a
third-order equation of correspondingly higher complexity, and so forth.
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t=0
T

5.3 Transient conduction in a one-dimensional slab

We next extend consideration to heat flow in bodies whose internal re-
sistance is significant—to situations in which the lumped capacitance
assumption is no longer appropriate. When the temperature within, say,
a one-dimensional body varies with position as well as time, we must
solve the heat diffusion equation for T'(x,t). We shall do this somewhat
complicated task for the simplest case and then look at the results of
such calculations in other situations.

A simple slab, shown in Fig. 5.6, is initially at a temperature T;. The
temperature of the surface of the slab is suddenly changed to Tj, and we
wish to calculate the interior temperature profile as a function of time.
The heat conduction equation is

2
PT_ 107 520
with the following b.c.’s and i.c.:
T(-L,t>0)=T(L,t>0)=T1 and T(x,t=0)=T; (5.25)
In fully dimensionless form, eqn. (5.24) and egn. (5.25) are

220 20

Figure 5.6 The transient cooling of a
¢ slab; & = (x/L) + 1.
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and
©(0,Fo) =0(2,Fo) =0 and ©(,0) =1 (5.27)

where we have nondimensionalized the problem in accordance with eqgn.
(5.4), using ® = (T — T1)/(T; — T;) and Fo = «t/L?; but for convenience
in solving the equation, we have set € equal to (x/L) + 1 instead of x /L.

The general solution of eqn. (5.26) may be found using the separation
of variables technique described in Sect. 4.2, leading to the dimensionless
form of egn. (4.11):

@ = e~ VPO [G sin(AE) + E cos(AE) ] (5.28)

Direct nondimensionalization of egn. (4.11) would show that A= AL,
since A had units of (length)~!. The solution therefore appears to have
introduced a fourth dimensionless group, A. This needs explanation. The
number A, which was introduced in the separation-of-variables process,
is called an eigenvalue.? In the present problem, A = AL will turn out to
be a number—or rather a sequence of numbers—that is independent of
system parameters.
Substituting the general solution, eqn. (5.28), in the first b.c. gives

0=e " (Q+E) so E=0
and substituting it in the second yields
0= e’f‘ZFO[G sin2A] so either G =0
or
2A =2, =nm, n=0,1,2,...

In the second case, we are presented with two choices. The first,
G = 0, would give ® = 0 in all situations, so that the initial condition
could never be accommodated. (This is what mathematicians call a trivial
solution.) The second choice, 5\,1 = nmr/2, actually yields a string of
solutions, each of the form

@ = Gy e W04 gin (%5) (5.29)

2The word eigenvalue is a curious hybrid of the German term eigenwert and its
English translation, characteristic value.
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where G, is the constant appropriate to the nth one of these solutions.

We still face the problem that none of egns. (5.29) will fit the initial
condition, ®(&,0) = 1. To get around this, we remember that the sum of
any number of solutions of a linear differential equation is also a solution.
Then we write

0=> Gy e~ TFO/4 gin (ngg) (5.30)
n=1

where we drop n = 0 since it gives zero contribution to the series. And
we arrive, at last, at the problem of choosing the G,’s so that eqn. (5.30)
will fit the initial condition.

®(£,0) = > Gpsin (n%&) -1 (5.31)
n=1

The problem of picking the values of G, that will make this equation
true is called “making a Fourier series expansion” of the function f (&) =
1. We shall not pursue strategies for making Fourier series expansions
in any general way. Instead, we merely show how to accomplish the task
for the particular problem at hand. We begin with a mathematical trick.
We multiply egn. (5.31) by sin(m1r/2), where m may or may not equal
n, and we integrate the result between & = 0 and 2.

J02 sin <g§) dg = nil Gn J02 sin (?g) Sin(%g) dE (5.32)

(The interchange of summation and integration turns out to be legitimate,
although we have not proved, here, that it is.3) With the help of a table
of integrals, we find that

Lj sin (M§> sin (nTTTE) dE = {0 forn + m

2 1 forn=m

Thus, when we complete the integration of eqn. (5.32), we get

mi 2

0 forn=+=m

2 00
= anX‘{
0 n=1

1 forn=m

3What is normally required is that the series in eqn. (5.31) be uniformly convergent.
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This reduces to

2

- (-1 -1] = Gn

SO

4 .
Gn = oy where n is an odd number

Substituting this result into eqn. (5.30), we finally obtain the solution to
the problem:

9]

O(EFo) == 3 e 2o gin (BTg) (5.33)
n n=odd n

Equation (5.33) admits a very nice simplification for large time (or at
large Fo). Suppose that we wish to evaluate © at the outer center of the
slab—at x = 0 or & = 1. Then

4
® (0,Fo) = — x
T
ex (TF)ZFO 1ex (Bn)zFo +1ex (57T>2Fo +
P 2 3 XP 2 5 &P 2
=0.085atFo=1 ~10"10atFo=1 ~10"%27 atFo =1
=0.781 atFo =0.1 =0.036 at Fo = 0.1 = 0.0004 at Fo = 0.1
=0.976 at Fo = 0.01 = 0.267 at Fo = 0.01 =0.108 at Fo = 0.01

Thus for values of Fo somewhat greater than 0.1, only the first term in
the series need be used in the solution (except at points very close to the
boundaries). We discuss these one-term solutions in Sect. 5.5. Before we
move to this matter, let us see what happens to the preceding problem
if the slab is subjected to b.c.’s of the third kind.

Suppose that the walls of the slab had been cooled by symmetrical
convection such that the b.c.’s were

oT

0x

and (T — Te)x—1 = —k or

E(Too - T)x=—L = -k
x=-L 0X | x=L

or in dimensionless form, using ® = (T —T)/(Ti—Te) and & = (x/L)+1,

1 00 00
=—= = and —o =0
’g_o Bi o0& £-0 0& £-1
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Table 5.1 Terms of series solutions for slabs, cylinders, and
spheres. Jy and J; are Bessel functions of the first kind.

A fn Equation for A,
2 sin 5\n (A X 2 5\n
lab = = = cos (A —) cotA, = —
Sla An + sin Ay, cos Ay "L " Big
2 J1(A ;T 2 2 . N
Cylinder ) Jo(Rn ) A Ja(n) = Bir, Jo(An)
An [J3Rn) + T30 | o
sinf\n—f\ncos)}n ( 7o ) . (?A\n1f> 2 I .
Sph 2 % = = = sin Ay cOtAy =1 - Biy,
phere An —sinA, cos Ay, An ¥ Yo " " "

The solution is somewhat harder to find than eqgn. (5.33) was, but the
result is*

©= > exp(-A2Fo) (2 SIn Ay cos[An (g 1)]) (5.34)
n-1 An + Sin A, cos Ay

where the values of f\n are given as a function of n and Bi = hL/k by the
transcendental equation

~

cotA, = %’; (5.35)

The successive positive roots of this equation, which are 5\n = f\l,f\g,
As,..., depend upon Bi. Thus, ® = fn(&,Fo,Bi), as we would expect. This
result, although more complicated than the result for b.c.’s of the first
kind, still reduces to a single term for Fo = 0.2.

Similar series solutions can be constructed for cylinders and spheres
that are convectively cooled at their outer surface, v = 7,. The solutions
for slab, cylinders, and spheres all have the form

T -Te

C)
Ti — T

=S Anexp (~A% Fo) fu (5.36)

n=1

where the coefficients A,, the functions f;, and the equations for the
dimensionless eigenvalues A, are given in Table 5.1.

4See, for example, [5.1, §2.3.4] or [5.2, §3.4.3] for details of this calculation.
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5.4 Temperature-response charts

Figure 5.7 is a graphical presentation of eqn. (5.34) for 0 < Fo < 1.5 and
for six x-planes in the slab. (Remember that the x-coordinate goes from
zero in the center to L on the boundary, while & goes from 0 up to 2 in
the preceding solution.)

Notice that, with the exception of points for which 1/Bi < 0.25 on
the outside boundary, the curves are all straight lines when Fo = 0.2.
Since the coordinates are semilogarithmic, this portion of the graph cor-
responds to the lead term—the only term that retains any importance—
in eqn. (5.34). When we take the logarithm of the one-term version of
eqn. (5.34), the result is

2sinA; cos[A1(E-1)] 2
In® =In| —%——% £ - - A’Fo
A1 + sinAj cos Ay
®-intercept at Fo = 0 of slope of the
the straight portion of straight portion
the curve of the curve

If Fo is greater than 1.5, the following options are then available to us for
solving the problem:

e Extrapolate the given curves using a straightedge.
o Evaluate © using the first term of eqn. (5.34), as discussed in Sect. 5.5.

o If Bi is small, use a lumped-capacity result.

Figure 5.8 and Fig. 5.9 are similar graphs for cylinders and spheres.
Everything that we have said in general about Fig. 5.7 is also true for
these graphs. They were simply calculated from different solutions, and
the numerical values on them are somewhat different. These charts are
from [5.3, Chap. 5], although such charts are often called Heisler charts,
after a collection of related charts subsequently published by Heisler
[5.4].

Another useful kind of chart derivable from eqgn. (5.34) is one that
gives heat removal from a body up to a time of interest:

t
_J L
0 0x

dt

surface

e

_JFO T, - T. 00

kA =
o L ¢

LZ
() dFo
surface x
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Dividing this by the total energy of the body above T, we get a quan-
tity, ®, which approaches unity as t — o and the energy is all transferred
to the surroundings:

® = dFo (5.37)

surface

t
Io Qdt N Fo 57@
pCV(Ti_Too) - 0 ag

where the volume, V = AL. Substituting the appropriate temperature
distribution [e.g., eqn. (5.34) for a slab] in eqn. (5.37), we obtain & (Fo, Bi)
in the form of an infinite series

® (Fo,Bi) =1 — > Dpexp (—A% Fo) (5.38)

n=1

The coefficients D,, are different functions of 5\,1 — and thus of Bi — for
slabs, cylinders, and spheres (e.g., for a slab D;,, = Ay, sin 5\11/5\”). These
functions can be used to plot ®(Fo, Bi) once and for all. Such curves are
given in Fig. 5.10.

The quantity ¢ has a close relationship to the mean temperature of
a body at any time, T(t). Specifically, the energy lost as heat by time ¢t
determines the difference between the initial temperature and the mean
temperature at time ¢

t
~kQM=[Wm—UUH=pdﬂE—HU} (5.39)

Thus, if we define © as follows, we find the relationship of T(t) to ®

t
T()-Te J, e at

l-—r—F——=1-9. (5.40)

2] =
Ti — T pcV(T; — Te)

Example 5.2

A dozen approximately spherical apples, 10 cm in diameter are taken
from a 30°C environment and laid out on a rack in a refrigerator at
5°C. They have approximately the same physical properties as water,
and h is approximately 6 W/m?K as the result of natural convection.
What will be the temperature of the centers of the apples after 1 hr?
How long will it take to bring the centers to 10°C? How much heat
will the refrigerator have to carry away to get the centers to 10°C?



P

pcrrro2 (Ti—Too!

1.0 1
(T T Wq "0
05— Fo-ﬁ = 50 20 10 05 '05
[ 01—t
0.05=—t""J
- | 0.02 —f -3
ol = L 00
10 107 0.01 0.1 10 2 5 10 20 50 00

Biot number, Bi = h L/k

a.) Slab of thickness, L, insulated on one side

1.0 |
- W B
- at ,-’1
0.5 pb— FO-—Z‘ 05 0.25 010 —05
- "o _.-—:
L 0.05 ]
g 0.01=1"
- 4
a 3 L 0.0
10 107 0.01 01 10 2 5 10 20 50 00

Biot number, 81 = Ero/k
b.) Cylinder, of radius, o

1.0 1.0
LT =
- "’-

0.5}— Fovﬁ - 2 1" 05 025 010 —o0.5
— -

K 0,05 |
- 0.01 -
- -
0 1 l 00
10 107 0.01 0.1 10 2 5 10 20 50 00

Biot number, Bi = Ero/k

c.) Sphere, of radius, rg

Figure 5.10 The heat removal from suddenly-cooled bodies as
a function of h and time.
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SOLUTION. After 1 hr, or 3600 s:

b &t _ (k) 36005
re  \PC)ypec (0.05m)2
(0.603 J/m-s-K) (3600 s)

= S = 0.208
(997.6 kg/m?) (4180 J/kg-K) (0.0025 m?)

Furthermore, Bi~! = (hr,/k)"! = [6(0.05)/0.603] 1 = 2.01. There-
fore, we read from Fig. 5.9 in the upper left-hand corner:

® = 0.85
After 1 hr:
Teenter = 0.85(30 — 5)°C + 5°C = 26.3°C

To find the time required to bring the center to 10°C, we first

calculate
10 -5
= =0.2
© 30-5 0
and Bi~! is still 2.01. Then from Fig. 5.9 we read
Fo=1.29 = (x—;
Yo

SO

¢ — 1.29(997.6)(4180)(0.0025) _ 22.300's = 6 hr 12 min

0.603
Finally, we look up ® at Bi = 1/2.01 and Fo = 1.29 in Fig. 5.10, for
spheres:
t
['qut
® =0.80 = 0

pc (3173 (Ti - Tao)

SO
t 4
JO Qdt = 997.6(4180) (gn(o.osﬁ) (25)(0.80) = 43,668 J/apple

Therefore, for the 12 apples,
total energy removal = 12(43.67) = 524 kJ |
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The temperature-response charts in Fig. 5.7 through Fig. 5.10 are with-
out doubt among the most useful available since they can be adapted to
a host of physical situations. Nevertheless, hundreds of such charts have
been formed for other situations, a number of which have been cataloged
by Schneider [5.5]. Analytical solutions are available for hundreds more
problems, and any reader who is faced with a complex heat conduction
calculation should consult the literature before trying to solve it. An ex-
cellent place to begin is Carslaw and Jaeger’s comprehensive treatise on
heat conduction [5.6].

Example 5.3

A 1 mm diameter Nichrome (20% Ni, 80% Cr) wire is simultaneously
being used as an electric resistance heater and as a resistance ther-
mometer in a liquid flow. The laboratory workers who operate it are
attempting to measure the boiling heat transfer coefficient, h, by sup-
plying an alternating current and measuring the difference between
the average temperature of the heater, Tyy, and the liquid tempera-
ture, To.. They get h = 30,000 W/m?K at a wire temperature of 100°C
and are delighted with such a high value. Then a colleague suggests
that h is so high because the surface temperature is rapidly oscillating
as a result of the alternating current. Is this hypothesis correct?

SOLUTION. Heat is being generated in proportion to the product of
voltage and current, or as sin® wt, where w is the frequency of the
current in rad/s. If the boiling action removes heat rapidly enough in
comparison with the heat capacity of the wire, the surface tempera-
ture may well vary significantly. This transient conduction problem
was first solved by Jeglic in 1962 [5.7]. It was redone in a different
form two years later by Switzer and Lienhard (see, e.g. [5.8]), who gave
response curves in the form

Tma.X - Tav .

T T fn (Bi, @) (5.41)
where the left-hand side is the dimensionless range of the tempera-
ture oscillation, and ¢ = wd?/«x, where § is a characteristic length
[see Problem 5.56]. Because this problem is common and the solu-
tion is not widely available, we include the curves for flat plates and
cylinders in Fig. 5.11 and Fig. 5.12 respectively.
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In the present case:

_ hradius _ 30,000(0.0005)

Bi K 138 =1.09
wr?  [21(60)](0.0005)> 27 s
x 0.00000343 o

and from the chart for cylinders, Fig. 5.12, we find that

Tmax B Tav

=~ (0.04
Tav — Teo

A temperature fluctuation of only 4% is probably not serious. It there-
fore appears that the experiment was valid. |

5.5 One-term solutions

As we have noted previously, when the Fourier number is greater than 0.2
or so, the series solutions from eqn. (5.36) may be approximated using
only their first term:

© ~ Ay - f1 - exp (—AlFo). (5.42)

Likewise, the fractional heat loss, ®, or the mean temperature ® from
eqn. (5.40), can be approximated using just the first term of eqn. (5.38):

@=1-®~Dexp(-A?Fo). (5.43)

Table 5.2 lists the values of 5\1, A1, and D; for slabs, cylinders, and
spheres as a function of the Biot number. The one-term solution’s er-
ror in O is less than 0.1% for a sphere with Fo > 0.28 and for a slab with
Fo = 0.43. These errors are largest for Biot numbers near unity. If high
accuracy is not required, these one-term approximations may generally
be used whenever Fo > 0.2



Table 5.2 One-term coefficients for convective cooling [5.1].

Bi Plate Cylinder Sphere
! A Aq D, A Ay D, A Aq D,
0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000
0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000
0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000
0.10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.9998
0.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996
0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993
0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985
0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974
0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960
0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944
0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925
0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904
0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880
1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855
1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828
1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800
1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770
1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739
1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707
1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674
1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605
2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534
2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462
2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389
3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171
4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830
5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533
6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281
8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889
10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607
20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922
50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434
100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259
00 1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079
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5.6 Transient heat conduction to a semi-infinite
region

Introduction

Bronowksi’s classic television series, The Ascent of Man [5.9], included
a brilliant reenactment of the ancient ceremonial procedure by which
the Japanese forged Samurai swords (see Fig. 5.13). The metal is heated,
folded, beaten, and formed, over and over, to create a blade of remarkable
toughness and flexibility. When the blade is formed to its final configu-
ration, a tapered sheath of clay is baked on the outside of it, so the cross
section is as shown in Fig. 5.13. The red-hot blade with the clay sheath is
then subjected to a rapid quenching, which cools the uninsulated cutting
edge quickly and the back part of the blade very slowly. The result is a
layer of case-hardening that is hardest at the edge and less hard at points
farther from the edge.

T Blade )

Clay-coated blade before quench Case-hardened blade

Figure 5.13 The ceremonial case-hardening of a Samurai sword.
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Figure 5.14 The initial cooling of a thin
sword blade. Prior to t = t4, the blade
- might as well be infinitely thick insofar as
¢ of blade cooling is concerned.

x

The blade is then tough and ductile, so it will not break, but has a fine
hard outer shell that can be honed to sharpness. We need only look a
little way up the side of the clay sheath to find a cross section that was
thick enough to prevent the blade from experiencing the sudden effects
of the cooling quench. The success of the process actually relies on the
failure of the cooling to penetrate the clay very deeply in a short time.

Now we wish to ask: “How can we say whether or not the influence
of a heating or cooling process is restricted to the surface of a body?”
Or if we turn the question around: “Under what conditions can we view
the depth of a body as infinite with respect to the thickness of the region
that has felt the heat transfer process?”

Consider next the cooling process within the blade in the absence of
the clay retardant and when h is very large. Actually, our considerations
will apply initially to any finite body whose boundary suddenly changes
temperature. The temperature distribution, in this case, is sketched in
Fig. 5.14 for four sequential times. Only the fourth curve—that for which
t = t4;—is noticeably influenced by the opposite wall. Up to that time,
the wall might as well have infinite depth.

Since any body subjected to a sudden change of temperature is in-
finitely large in comparison with the initial region of temperature change,
we must learn how to treat heat transfer in this period.

Solution aided by dimensional analysis

The calculation of the temperature distribution in a semi-infinite region
poses a difficulty in that we can impose a definite b.c. at only one position—
the exposed boundary. We shall be able to get around that difficulty in a
nice way with the help of dimensional analysis.
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When the one boundary of a semi-infinite region, initially at T = Tj,
is suddenly cooled (or heated) to a new temperature, T, as in Fig. 5.14,
the dimensional function equation is

where there is no characteristic length or time. Since there are five vari-
ables in °C, s, and m, we should look for two dimensional groups.

T-Ts b
S L R 5.44
T; — Tw n( Jat) (5-44)
——
0 C

The very important thing that we learn from this exercise in dimen-
sional analysis is that position and time collapse into one independent
variable. This means that the heat conduction equation and its b.c.s must
transform from a partial differential equation into a simpler ordinary dif-
ferential equation in the single variable, = x/+/«t. Thus, we transform
each side of

o1 1o
0x2 ot

as follows, where we call T; — To, = AT

O (-7 20 — a7 0% _yp(-_X )20,
at_(T‘ T“)at_ATag at_AT 2t/at) 0C’
T _ 19090 _ AT 30
ox  ~9Cox Jat oC’

0°T AT 3°0 3C AT 9°0©
0x2  Jat 0C2 0x  «t 0C2°

and

Substituting the first and last of these derivatives in the heat conduction
equation, we get
4’0 _ T de

Notice that we changed from partial to total derivative notation, since
® now depends solely on C. The i.c. for eqn. (5.45) is

T(t=0)=T; or O — ) =1 (5.46)
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and the one known b.c. is
T(x=0)=T, or ©(C=0)=0 (5.47)

If we call d®/dC = ¥, then eqgn. (5.45) becomes the first-order equa-
tion

ax _ ¢

ac ~ 2%
which can be integrated once to get

do

= — = _§2/4
= dC C1 e (548)
and we integrate this a second time to get
C 2
0=0C J e Stdg+  0(0) (5.49)
0 [ —
= 0 according
to the b.c.

The b.c. is now satisfied, and we need only substitute eqn. (5.49) in the
i.c., eqn. (5.46), to solve for Cy:

1= JO e T g
The definite integral is given by integral tables as /1T, so

Clz\/iﬁ

Thus the solution to the problem of conduction in a semi-infinite region,
subject to a b.c. of the first kind is

c cr2
= jﬁ JO e Tl gr = jﬁ JO e~ ds = erf(Z/2) (5.50)

The second integral in eqn. (5.50), obtained by a change of variables,
is called the error function (erf). Its name arises from its relationship to
certain statistical problems related to the Gaussian distribution, which
describes random errors. In Table 5.3, we list values of the error function
and the complementary error function, erfc(x) = 1 — erf(x). Equation
(5.50) is also plotted in Fig. 5.15.
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Table 5.3 Error function and complementary error function.

c/2 erf (C/2) erfc(C/2) c/2 erf(C/2) erfc(C/2)
0.00 0.00000 1.00000 1.10 0.88021 0.11980
0.05 0.05637 0.94363 1.20 0.91031 0.08969
0.10 0.11246 0.88754 1.30 0.93401 0.06599
0.15 0.16800 0.83200 1.40 0.95229 0.04771
0.20 0.22270 0.77730 1.50 0.96611 0.03389
0.30 0.32863 0.67137 1.60 0.97635 0.02365
0.40 0.42839 0.57161 1.70 0.98379 0.01621
0.50 0.52050 0.47950 1.80 0.98909 0.01091
0.60 0.60386 0.39614 1.8214 0.99000 0.01000
0.70 0.67780 0.32220 1.90 0.99279 0.00721
0.80 0.74210 0.25790 2.00 0.99532 0.00468
0.90 0.79691 0.20309 2.50 0.99959 0.00041
1.00 0.84270 0.15730 3.00 0.99998 0.00002

In Fig. 5.15 we see the early-time curves shown in Fig. 5.14 have col-
lapsed into a single curve. This was accomplished by the similarity trans-
formation, as we call it>: €/2 = x/2+/«t. From the figure or from Table
5.3, we see that ©® > 0.99 when

C X

2 2/ ot

In other words, the local value of (T — Tw) is more than 99% of (T; — T«)
for positions in the slab beyond farther from the surface than 699 =

3.64+/«t.

>1.8214 or x > 899 = 3.64Vxxt (5.51)

Example 5.4

For what maximum time can a samurai sword be analyzed as a semi-

infinite region after it is quenched, if it has no clay coating and Rexternal
=~ 007

SOLUTION. First, we must guess the half-thickness of the sword (say,
3 mm) and its material (probably wrought iron with an average «

>The transformation is based upon the “similarity” of spatial an temporal changes
in this problem.
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1.0 T
T-T, B i
©- Ti—-T, B h
0.5— erf(§/2) ]
) l l )
0 1 2 3
§/2=x/2+/at a semi-infinite region.

around 1.5 x 107> m2/s). The sword will be semi-infinite until dgg9
equals the half-thickness. Inverting eqn. (5.51), we find

834 (0.003 m)?
t< -
3.642x  13.3(1.5)(10)-> m?/s

Thus the quench would be felt at the centerline of the sword within
only 1/20 s. The thermal diffusivity of clay is smaller than that of steel
by a factor of about 30, so the quench time of the coated steel must
continue for over 1 s before the temperature of the steel is affected
at all, if the clay and the sword thicknesses are comparable. |

=0.045 s

Equation (5.51) provides an interesting foretaste of the notion of a
fluid boundary layer. In the context of Fig. 1.9 and Fig. 1.10, we ob-
serve that free stream flow around an object is disturbed in a thick layer
near the object because the fluid adheres to it. It turns out that the
thickness of this boundary layer of altered flow velocity increases in the
downstream direction. For flow over a flat plate, this thickness is ap-
proximately 4.92+/vt, where t is the time required for an element of the
stream fluid to move from the leading edge of the plate to a point of inter-
est. This is quite similar to eqn. (5.51), except that the thermal diffusivity,
«, has been replaced by its counterpart, the kinematic viscosity, v, and
the constant is a bit larger. The velocity profile will resemble Fig. 5.15.

If we repeated the problem with a boundary condition of the third
kind, we would expect to get ® = O (Bi, ), except that there is no length,
L, upon which to build a Biot number. Therefore, we must replace L with
Jat, which has the dimension of length, so

0=0 (C, W) =0(g,B) (5.52)

Figure 5.15 Temperature distribution in
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The term B = h+/«t/k is like the product: Biv/Fo. The solution of this
problem (see, e.g., [5.6], §2.7) can be conveniently written in terms of the
complementary error function, erfc(x) =1 — erf(x):

0= erf%+exp (BC+BZ) [erfc <§+B)] (5.53)

This result is plotted in Fig. 5.16.

Example 5.5

Most of us have passed our finger through an 800°C candle flame and
know that if we limit exposure to about 1/4 s we will not be burned.
Why not?

SOLUTION. The short exposure to the flame causes only a very su-
perficial heating, so we consider the finger to be a semi-infinite re-
gion and go to eqn. (5.53) to calculate (Thurn — Tfiame) / (Ti — Thame)- It
turns out that the burn threshold of human skin, Tyym, is about 65°C.
(That is why 140°F or 60°C tap water is considered to be “scalding.”)
Therefore, we shall calculate how long it will take for the surface tem-
perature of the finger to rise from body temperature (37°C) to 65°C,
when it is protected by an assumed h = 100 W/m?K. We shall assume
that the thermal conductivity of human flesh equals that of its major
component—water—and that the thermal diffusivity is equal to the
known value for beef. Then

65800

=37-800 " 0.963

BT = th =0 since x = 0 at the surface

, Rat  1002(0.135 x 10-0)¢

B k2 0.632

= 0.0034(t s)

The situation is quite far into the corner of Fig. 5.16. We read 2 =
0.001, which corresponds with t = 0.3 s. For greater accuracy, we
must go to eqn. (5.53):

0.963 = erf 0 +00034! [erfc (0 ++0.0034 t)]
=0
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Figure 5.16 The cooling of a semi-infinite region by an envi-
ronment at T, through a heat transfer coefficient, h.
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By trial and error, we get t = 0.33 s. In fact, it can be shown that
2
JTT
which can be solved directly for 8 = (1 — 0.963)/7m/2 = 0.03279,
leading to the same answer.

Thus, it would require about 1/3 s to bring the skin to the burn
point. |

0(€=0,p) = (1-B) forBp<1

Experiment 5.1

Immerse your hand in the subfreezing air in the freezer compartment
of your refrigerator. Next immerse your finger in a mixture of ice cubes
and water, but do not move it. Then, immerse your finger in a mixture of
ice cubes and water , swirling it around as you do so. Describe your initial
sensation in each case, and explain the differences in terms of Fig. 5.16.
What variable has changed from one case to another?

Heat transfer

Heat will be removed from the exposed surface of a semi-infinite region,
with a b.c. of either the first or the third kind, in accordance with Fourier’s
law:

oT

q=—ka

_ k(Too - Tl) die)
x=0 \/ﬁ dC =0

Differentiating ©® as given by eqn. (5.50), we obtain, for the b.c. of the
first kind,

(5.54)

767
vt TTxXt

k(T —Ty) ( 1 ;2,4) k(T —Ty)
VT £=0

Thus, g decreases with increasing time, as t ~'/2. When the temperature
of the surface is first changed, the heat removal rate is enormous. Then
it drops off rapidly.

It often occurs that we suddenly apply a specified input heat flux,
qdw, at the boundary of a semi-infinite region. In such a case, we can
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differentiate the heat diffusion equation with respect to x, so
0(63T _0°T
ox3  0tox
When we substitute g = —k 0T /dx in this, we obtain

2°q 0q
“ox2 T ot
with the b.c.’s:
qx=0,t >0)=qw oOr qw —4 =0
Aw x=0
q(x=>0,t=0)=0 or qw —4 =1
dw  |i=0

What we have done here is quite elegant. We have made the problem
of predicting the local heat flux g into exactly the same form as that of
predicting the local temperature in a semi-infinite region subjected to a
step change of wall temperature. Therefore, the solution must be the
same:

dw — 4 ( X )
=erf | —— . 5.55
dw 2/t ( )
The temperature distribution is obtained by integrating Fourier’s law. At
the wall, for example:

Tw
dT = J 1 4x
T;

where T; = T(x — o) and Ty, = T(x = 0). Then
Tw =Ti + qu erfc(x /2 at) dx
0
This becomes

Tw=T; + —rj erfc(C/Z)dC

2/ yw

Ty (1) 2‘“““1/ (5.56)

SO
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Temperature distribution in
Le® the liquid next to the bubble
Superheated liquid
far from bubble
T=Tsup >Tsat 1ot *
. . . Saturated vapor
Figure 5.17 A bubble growing in a within bubbie,
superheated liquid. T=Teut

Example 5.6 Predicting the Growth Rate of a Vapor Bubble
in an Infinite Superheated Liquid

This prediction is relevant to a large variety of processes, ranging
from nuclear thermodynamics to the direct-contact heat exchange. It
was originally presented by Max Jakob and others in the early 1930s
(see, e.g., [5.10, Chap. I]). Jakob (pronounced Yah’-kob) was an im-
portant figure in heat transfer during the 1920s and 1930s. He left
Nazi Germany in 1936 to come to the United States. We encounter
his name again later.

Figure 5.17 shows how growth occurs. When a liquid is super-
heated to a temperature somewhat above its boiling point, a small
gas or vapor cavity in that liquid will grow. (That is what happens in
the superheated water at the bottom of a teakettle.)

This bubble grows into the surrounding liquid because its bound-
ary is kept at the saturation temperature, T, by the near-equilibrium
coexistence of liquid and vapor. Therefore, heat must flow from the
superheated surroundings to the interface, where evaporation occurs.
So long as the layer of cooled liquid is thin, we should not suffer too
much error by using the one-dimensional semi-infinite region solu-
tion to predict the heat flow.
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Thus, we can write the energy balance at the bubble interface:

W 5 o J\ [dv m?
() (i ) = (o ) (47 5

Q into bubble rate of energy increase
of the bubble

and then substitute eqn. (5.54) for g and 41mR3/3 for the volume, V.
This gives

k(Tsup — Tsat) _ d7R
ot Polfe gy (5:57)

Integrating eqn. (5.57) from R = Q0 att = O up to R at t, we obtain
Jakob’s prediction:

2 kAT
= ———t (5.58)
A/ TT pghfg\/(x -

This analysis was done without assuming the curved bubble interface
to be plane, 24 years after Jakob’s work, by Plesset and Zwick [5.11]. It
was verified in a more exact way after another 5 years by Scriven [5.12].
These calculations are more complicated, but they lead to a very similar
result:

2/3 kAT

R="2 pal /& Vt = v/3 Rjakob- (5.59)
Both predictions are compared with some of the data of Dergarabe-
dian [5.13] in Fig. 5.18. The data and the exact theory match almost
perfectly. The simple theory of Jakob et al. shows the correct depen-
dence on R on all its variables, but it shows growth rates that are low
by a factor of /3. This is because the expansion of the spherical bub-
ble causes a relative motion of liquid toward the bubble surface, which
helps to thin the region of thermal influence in the radial direction. Con-
sequently, the temperature gradient and heat transfer rate are higher
than in Jakob’s model, which neglected the liquid motion. Therefore, the
temperature profile flattens out more slowly than Jakob predicts, and the

bubble grows more rapidly.

Experiment 5.2

Touch various objects in the room around you: glass, wood, cork-
board, paper, steel, and gold or diamond, if available. Rank them in
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Figure 5.18 The growth of a vapor bubble—predictions and
measurements.

order of which feels coldest at the first instant of contact (see Problem
5.29).

The more advanced theory of heat conduction (see, e.g., [5.6]) shows
that if two semi-infinite regions at uniform temperatures T; and T» are
placed together suddenly, their interface temperature, T, is given by®

Ts — T» \(kpcp)2

Ti=To \[tkpey)r ++/(kpcp)2

If we identify one region with your body (T; = 37°C) and the other with
the object being touched (T> ~ 20°C), we can determine the temperature,
T, that the surface of your finger will reach upon contact. Compare
the ranking you obtain experimentally with the ranking given by this
equation.

Notice that your bloodstream and capillary system provide a heat

6For semi-infinite regions, initially at uniform temperatures, Ts; does not vary with
time. For finite bodies, T; will eventually change. A constant value of T; means that
each of the two bodies independently behaves as a semi-infinite body whose surface
temperature has been changed to T at time zero. Consequently, our previous results—
eqns. (5.50), (5.51), and (5.54)—apply to each of these bodies while they may be treated
as semi-infinite. We need only replace T, by T, in those equations.
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source in your finger, so the equation is valid only for a moment. Then
you start replacing heat lost to the objects. If you included a diamond
among the objects that you touched, you will notice that it warmed up
almost instantly. Most diamonds are quite small but are possessed of the
highest known value of «. Therefore, they can behave as a semi-infinite
region only for an instant, and they usually feel warm to the touch.

Conduction to a semi-infinite region with a harmonically
oscillating temperature at the boundary

Suppose that we approximate the annual variation of the ambient tem-
perature as sinusoidal and then ask what the influence of this variation
will be beneath the ground. We want to calculate T — T (where T is the
time-average surface temperature) as a function of: depth, x; thermal
diffusivity, «; frequency of oscillation, w; amplitude of oscillation, AT;
and time, t. There are six variables in K, m, and s, so the problem can be
represented in three dimensionless variables:

_T-T,

w
AT Q = wt; E:x,/a.

We pose the problem as follows in these variables. The heat conduc-
tion equation is

C)

100 00
and the b.c.’s are
O g0 = cos wt and O ’ £50 = finite (5.61)

No i.c. is needed because, after the initial transient decays, the remaining
steady oscillation must be periodic.

The solution is given by Carslaw and Jaeger (see [5.6, §2.6] or work
Problem 5.16). It is

O(E,Q)=efcos(Q-¥) (5.62)

This result is plotted in Fig. 5.19. It shows that the surface temperature
variation decays exponentially into the region and suffers a phase shift
as it does so.
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Figure 5.19 The temperature variation within a semi-infinite
region whose temperature varies harmonically at the boundary.

Example 5.7

How deep in the earth must we dig to find the temperature wave that
was launched by the coldest part of the last winter if it is now high

summer?

SOLUTION. w = 27 rad/yr, and Q = wt
we must find the depths at which the Q

0 at the present. First,
0 curve reaches its lo-

cal extrema. (We pick the Q = 0 curve because it gives the highest

temperature at t = 0.)

a9 = —efcos(0-&) +e %sin(0-§) =0
d€ [ g0
This gives
3 7T
tan(0-§) =1 so &=,

and the first minimum occurs where & = 31r/4 = 2.356, as we can see

in Fig. 5.19. Thus,

E=xJw/200 = 2.356
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or, if we take o = 0.139x107% m?/s (given in [5.14] for coarse, gravelly
earth),

21 1
~ 2.356 — 2.783
X /\/2 (0.139 x 10-6) 365(24) (3600) o

If we dug in the earth, we would find it growing older and colder until
it reached a maximum coldness at a depth of about 2.8 m. Farther
down, it would begin to warm up again, but not much. In midwinter
(Q = 1), the reverse would be true. |

5.7 Steady multidimensional heat conduction
Introduction

The general equation for T(#) during steady conduction in a region of
constant thermal conductivity, without heat sources, is called Laplace’s
equation:

V3T =0 (5.63)

It looks easier to solve than it is, since [recall eqn. (2.12) and eqn. (2.14)]
the Laplacian, V2T, is a sum of several second partial derivatives. We
solved one two-dimensional heat conduction problem in Example 4.1,
but this was not difficult because the boundary conditions were made to
order. Depending upon your mathematical background and the specific
problem, the analytical solution of multidimensional problems can be
anything from straightforward calculation to a considerable challenge.
The reader who wishes to study such analyses in depth should refer to
[5.6] or [5.15], where such calculations are discussed in detail.

Faced with a steady multidimensional problem, three routes are open
to us:

e Find out whether or not the analytical solution is already available
in a heat conduction text or in other published literature.

e Solve the problem.

(a) Analytically.
(b) Numerically.
e Obtain the solution graphically if the problem is two-dimensional.

It is to the last of these options that we give our attention next.
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Figure 5.20 The two-dimensional flow
of heat between two isothermal walls.

The flux plot

The method of flux plotting will solve all steady planar problems in which
all boundaries are held at either of two temperatures or are insulated.
With a little skill, it will provide accuracies of a few percent. This accuracy
is almost always greater than the accuracy with which the b.c.’s and k
can be specified; and it displays the physical sense of the problem very
clearly.

Figure 5.20 shows heat flowing from one isothermal wall to another
in a regime that does not conform to any convenient coordinate scheme.
We identify a series of channels, each which carries the same heat flow,
0Q W/m. We also include a set of equally spaced isotherms, 6T apart,
between the walls. Since the heat fluxes in all channels are the same,

\5Q( = k%as (5.64)

Notice that if we arrange things so that 6Q, 6T, and k are the same
for flow through each rectangle in the flow field, then 6s/6n must be the
same for each rectangle. We therefore arbitrarily set the ratio equal to
unity, so all the elements appear as distorted squares.

The objective then is to sketch the isothermal lines and the adiabatic,’

"These are lines in the direction of heat flow. It immediately follows that there can
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or heat flow, lines which run perpendicular to them. This sketch is to be
done subject to two constraints

e Isothermal and adiabatic lines must intersect at right angles.

e They must subdivide the flow field into elements that are nearly
square—“nearly” because they have slightly curved sides.

Once the grid has been sketched, the temperature anywhere in the field
can be read directly from the sketch. And the heat flow per unit depth
into the paper is

0s N

where N is the number of heat flow channels and I is the number of
temperature increments, AT /6T.

The first step in constructing a flux plot is to draw the boundaries of
the region accurately in ink, using either drafting software or a straight-
edge. The next is to obtain a soft pencil (such as a no. 2 grade) and a
soft eraser. We begin with an example that was executed nicely in the
influential Heat Transfer Notes [5.3] of the mid-twentieth century. This
example is shown in Fig. 5.21.

The particular example happens to have an axis of symmetry in it. We
immediately interpret this as an adiabatic boundary because heat cannot
cross it. The problem therefore reduces to the simpler one of sketching
lines in only one half of the area. We illustrate this process in four steps.
Notice the following steps and features in this plot:

e Begin by dividing the region, by sketching in either a single isother-
mal or adiabatic line.

e Fill in the lines perpendicular to the original line so as to make
squares. Allow the original line to move in such a way as to accom-
modate squares. This will always require some erasing. Therefore:

e Never make the original lines dark and firm.

¢ By successive subdividing of the squares, make the final grid. Do
not make the grid very fine. If you do, you will lose accuracy because
the lack of perpendicularity and squareness will be less evident to
the eye. Step IV in Fig. 5.21 is as fine a grid as should ever be made.

be no component of heat flow normal to them; they must be adiabatic.



Step Il. Sketch in the squares
related to first isotherm, cor-
recting it as you do so.

\ |

Step |. Sketch
a single dividing
isotherm.

The first rough
sketching

1/7th of a channel

Step 111, Sketch

V2 and correct until
——]| vyou are reasonably

content with the

- form.

Step |V. Darken in
your final lines

and erase the sketch ]
lines.

LMVWNL

Figure 5.21 The evolution of a flux plot.
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If you have doubts about whether any large, ill-shaped regions are
correct, fill them in with an extra isotherm and adiabatic line to
be sure that they resolve into appropriate squares (see the dashed
lines in Fig. 5.21).

Fill in the final grid, when you are sure of it, either in hard pencil or
pen, and erase any lingering background sketch lines.

Your flow channels need not come out even. Notice that there is an
extra 1/7 of a channel in Fig. 5.21. This is simply counted as 1/7 of
a square in eqn. (5.65).

Never allow isotherms or adiabatic lines to intersect themselves.

When the sketch is complete, we can return to eqgn. (5.65) to compute
the heat flux. In this case

kAT = 3.07 kAT

N, . 2(6.14)
Q=7 kaT ==

When the authors of [5.3] did this problem, they obtained N/I = 3.00—a
value only 2% below ours. This kind of agreement is typical when flux
plotting is done with care.

T2
W

( A
3 of a channel
4

T —

% of a channel ———\>.

Figure 5.22 A flux plot with no axis of symmetry to guide
construction.
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One must be careful not to grasp at a false axis of symmetry. Figure
5.22 shows a shape similar to the one that we just treated, but with un-
equal legs. In this case, no lines must enter (or leave) the corners A and
B. The reason is that since there is no symmetry, we have no guidance
as to the direction of the lines at these corners. In particular, we know
that a line leaving A will no longer arrive at B.

Example 5.8

A structure consists of metal walls, 8 cm apart, with insulating ma-
terial (k = 0.12 W/m-K) between. Ribs 4 cm long protrude from one
wall every 14 cm. They can be assumed to stay at the temperature of
that wall. Find the heat flux through the wall if the first wall is at 40°C
and the one with ribs is at 0°C. Find the temperature in the middle of
the wall, 2 cm from a rib, as well.

40°C 0
©
1 2 3 4 5 6
5.6

5

p—— 1
4

A

I 27 | 3
2
1

Rough sketch K Final flux plot
00

o

Figure 5.23 Heat transfer through a wall with isothermal ribs.
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SOLUTION. The flux plot for this configuration is shown in Fig. 5.23.
For a typical section, there are approximately 5.6 isothermal incre-
ments and 6.15 heat flow channels, so

2(6.15)
5.6

N
Q= TkATz (0.12)(40 - 0) = 10.54 W/m
where the factor of 2 accounts for the fact that there are two halves
in the section. We deduce the temperature for the point of interest,
A, by a simple proportionality:

2.1
Thoint A = %(40 —-0) =15°C |

The shape factor

A heat conduction shape factor S may be defined for steady problems
involving two isothermal surfaces as follows:

Q = SKAT. (5.66)

Thus far, every steady heat conduction problem we have done has taken
this form. For these situations, the heat flow always equals a function of
the geometric shape of the body multiplied by kAT.

The shape factor can be obtained analytically, numerically, or through
flux plotting. For example, let us compare egn. (5.65) and eqgn. (5.66):

Q W = (S dimensionless) (kAT w) = N kAT (5.67)
m m I

This shows S to be dimensionless in a two-dimensional problem, but in
three dimensions S has units of meters:

QW= (Sm) (kAT %) (5.68)

It also follows that the thermal resistance of a two-dimensional body is

where Q= ar (5.69)

Re=1s R,

For a three-dimensional body, eqn. (5.69) is unchanged except that the
dimensions of Q and R; differ.?

8Recall that we noted after eqn. (2.22) that the dimensions of R; changed, depending
on whether or not Q was expressed in a unit-length basis.
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T, T2
Ty
+
N 3
= =—=143
s i 2.1 T
+

Figure 5.24 The shape factor for two similar bodies of differ-
ent size.

The virtue of the shape factor is that it summarizes a heat conduction
solution in a given configuration. Once S is known, it can be used again
and again. That S is nondimensional in two-dimensional configurations
means that Q is independent of the size of the body. Thus, in Fig. 5.21, S
is always 3.07—regardless of the size of the figure—and in Example 5.8, S
is 2(6.15)/5.6 = 2.196, whether or not the wall is made larger or smaller.
When a body’s breadth is increased so as to increase Q, its thickness in
the direction of heat flow is also increased so as to decrease Q by the
same factor.

Example 5.9

Calculate the shape factor for a one-quarter section of a thick cylinder.

SOLUTION. We already know R; for a thick cylinder. It is given by
eqn. (2.22). From it we compute

Gt = 1 _ 21T
N7 kR, In(ro/77)

so on the case of a quarter-cylinder,

_ TT
~ 2In(ro/7i)

The quarter-cylinder is pictured in Fig. 5.24 for a radius ratio, 7, /7; =
3, but for two different sizes. In both cases S = 1.43. (Note that the
same S is also given by the flux plot shown.) |
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Figure 5.25 Heat transfer through a
thick, hollow sphere.

Example 5.10

Calculate S for a thick hollow sphere, as shown in Fig. 5.25.

SOLUTION. The general solution of the heat diffusion equation in
spherical coordinates for purely radial heat flow is:

T=Q+C2
v

when T = fn(v only). The b.c.’s are
Tr=v)=T; and T =7,) =T,

substituting the general solution in the b.c.’s we get

Q+C‘2=Ti and g+C1 =T0
T o]
Therefore,
T; — T, T; — T,
Ci=—"—2vr, and Co=T; - +—"2r,
To - Tl 1’0 - Tl
Putting C; and C> in the general solution, and calling T; — T, = AT,
we get
T =T +AT|—10 __ _To
v(ro —7i) Yo—7i
Then
ar  4m(rr,)
= -kAZ— = —— L2 kAT
Q dr Yo — Vi
5 - 41t (1i7,) m
Yo —71i

where S now has the dimensions of m. |
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Table 5.4 includes a number of analytically derived shape factors for
use in calculating the heat flux in different configurations. Notice that
these results will not give local temperatures. To obtain that information,
one must solve the Laplace equation, V2T = 0, by one of the methods
listed at the beginning of this section. Notice, too, that this table is re-
stricted to bodies with isothermal and insulated boundaries.

In the two-dimensional cases, both a hot and a cold surface must be
present in order to have a steady-state solution; if only a single hot (or
cold) body is present, steady state is never reached. For example, a hot
isothermal cylinder in a cooler, infinite medium never reaches steady
state with that medium. Likewise, in situations 5, 6, and 7 in the table,
the medium far from the isothermal plane must also be at temperature
T> in order for steady state to occur; otherwise the isothermal plane and
the medium below it would behave as an unsteady, semi-infinite body. Of
course, since no real medium is truly infinite, what this means in practice
is that steady state only occurs after the medium “at infinity” comes to
a temperature T»>. Conversely, in three-dimensional situations (such as
4,8, 12, and 13), a body can come to steady state with a surrounding
infinite or semi-infinite medium at a different temperature.

Example 5.11

A spherical heat source of 6 cm in diameter is buried 30 cm below the
surface of a very large box of soil and kept at 35°C. The surface of
the soil is kept at 21°C. If the steady heat transfer rate is 14 W, what
is the thermal conductivity of this sample of soil?

SOLUTION.

41TR

Q=SkaT = (1—R/2h

)kAT

where S is that for situation 7 in Table 5.4. Then

14W 1-(0.06/2)/2(0.3)

k= (35 -21)K  47(0.06/2) m

= 2.545 W/m-K |

Readers who desire a broader catalogue of shape factors should refer
to [5.16], [5.18], or [5.19].



Table 5.4 Conduction shape factors: Q = S kAT.

Situation Shape factor, S Dimensions Source
1. Conduction through a slab A/L meter Example 2.2
2. Conduction through wall of a long 21T

thick cylinder n(ro /1) none Example 5.9
3. Conduction through a thick-walled 41t (v,77i)

hollow sphere P— meter Example 5.10

4. The boundary of a spherical hole of
radius R conducting into an infinite

medium
Problems 5.19

7 /S
/% T 41TR meter and 2.15

5. Cylinder of radius R and length L,
transferring heat to a parallel
isothermal plane; h <L

21L

1 meter [5.16]
///// cosh™ (h/R)

//////

6. Same as item 5, but with L — o 2T

(two-dimensional conduction) cosh™ (h/R) none [5.16]

7. An isothermal sphere of radius R
transfers heat to an isothermal
plane; R/h < 0.8 (see item 4)

41R

// ///




Table 5.4 Conduction shape factors: Q = S kAT (con’t).

Situation Shape factor, S Dimensions Source
8. An isothermal sphere of radius R,
near an insulated plane, transfers
heat to a semi-infinite medium at
T (see items 4 and 7) 4TTR
—_— t 5.18
1+R/2h meter  [>.18]
9. Parallel cylinders exchange heat in
an infinite conducting medium
2
R R, 27T 5 5 none [5.6]
1 (L% =R} — R}
_— cosh
2R 1R>
T i(— L ——'I T2
. . 21T
10. Same as 9, but with cylinders none [5.16]
widely spaced; L > R; and R h! ( ) + h! (—)
Y Sp 1 2 cos 2R, Cos Ry
11. Cylinder of radius R; surrounded 2t
by eccentric cylinder of radius hl R2 + Ri2 —-1? none [5.6]
R, > R;; centerlines a distance L cos 2R, R;
apart (see item 2)
12. Isothermal disc of radius R on an
otherwise insulated plane conducts 4R meter [5.6]
heat into a semi-infinite medium at
T below it
13. Isothermal ellipsoid of semimajor amtb 1 — a2 /b2
axis b and semiminor axes a / meter [5.16]

conducts heat into an infinite
medium at T; b > a (see 4)

tanh ™! (1/1 - az/bz)
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Fraction of —§—
a full

channel

L Figure 5.26 Resistance vanishes where
T, two isothermal boundaries intersect.

The problem of locally vanishing resistance

Suppose that two different temperatures are specified on adjacent sides
of a square, as shown in Fig. 5.26. The shape factor in this case is

S=T=4°°®

(It is futile to try and count channels beyond N ~ 10, but it is clear that
they multiply without limit in the lower left corner.) The problem is that
we have violated our rule that isotherms cannot intersect and have cre-
ated a 1/v singularity. If we actually tried to sustain such a situation,
the figure would be correct at some distance from the corner. However,
where the isotherms are close to one another, they will necessarily influ-
ence and distort one another in such a way as to avoid intersecting. And
S will never really be infinite, as it appears to be in the figure.

5.8 Transient multidimensional heat conduction—
The tactic of superposition

Consider the cooling of a stubby cylinder, such as the one shown in
Fig. 5.27a. The cylinder is initially at T = Tj, and it is suddenly sub-
jected to a common b.c. on all sides. It has a length 2L and a radius 7,.
Finding the temperature field in this situation is inherently complicated.



248

Transient and multidimensional heat conduction §5.8

It requires solving the heat conduction equation for T = fn(v, z, t) with
b.c.’s of the first, second, or third kind.

However, Fig. 5.27a suggests that this can somehow be viewed as a
combination of an infinite cylinder and an infinite slab. It turns out that
the problem can be analyzed from that point of view.

If the body is subject to uniform b.c.’s of the first, second, or third
kind, and if it has a uniform initial temperature, then its temperature
response is simply the product of an infinite slab solution and an infinite
cylinder solution each having the same boundary and initial conditions.
For the case shown in Fig. 5.27a, if the cylinder begins convective cool-
ing into a medium at temperature T at time t = 0, the dimensional
temperature response is

T(r,z,t) - T = |Taap(2,1) = T | X [Te(r, ) = T]  (5.70a)

Observe that the slab has as a characteristic length L, its half thickness,
while the cylinder has as its characteristic length R, its radius. In dimen-
sionless form, we may write egn. (5.70a) as

Tr,z,t) — Te
Ti — Teo

C)

= [®inf slab(E,FOS,Bis)] [®inf Cyl(.DaFOc,Bic)]
(5.70Db)

For the cylindrical component of the solution,

r ot hr,
= —, Fo.=—, and Bi. = ,
p Yo ¢ 1,-02 ke k
while for the slab component of the solution
z P . hL
§=Z+1, FOS:ﬁ! and Bl_g:?.

The component solutions are none other than those discussed in Sec-
tions 5.3-5.5. The proof of the legitimacy of such product solutions is
given by Carlsaw and Jaeger [5.6, §1.15].

Figure 5.27b shows a point inside a one-eighth-infinite region, near the
corner. This case may be regarded as the product of three semi-infinite
bodies. To find the temperature at this point we write

T(Xl,XZ,XB, t) B

Lo [ @emi (C1, B)] [Osemi (T2, B)] [Osemi (T3, B)]
(5.71)

0]
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b.) The temperature response of a *2
point within a corner analyzed
as the product of three semi-
infinite region solutions.

_______ a.) The temperature response of a

stubby cylinder analyzed as the
product of infinite slab and
infinite cylinder solutions.
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sfab solutions.

Figure 5.27 Various solid bodies whose transient cooling can
be treated as the product of one-dimensional solutions.

X1

c.) The temperature response of a
long square rod interpreted as
the product of two infinite
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in which @genyj is either the semi-infinite body solution given by eqn. (5.53)
when convection is present at the boundary or the solution given by
eqn. (5.50) when the boundary temperature itself is changed at time zero.

Several other geometries can also be represented by product solu-
tions. Note that for of these solutions, the value of ® at t = O is one for
each factor in the product.

Example 5.12

A very long 4 cm square iron rod at T; = 100°C is suddenly immersed
in a coolant at T = 20°C with h = 800 W/mZ2K. What is the temper-
ature on a line 1 cm from one side and 2 cm from the adjoining side,
after 10 s?

SOLUTION. With reference to Fig. 5.27c, see that the bar may be
treated as the product of two slabs, each 4 cm thick. We first evaluate
Fo; = Fop = at/L? = (0.0000226 m?/s)(10 s)/(0.04 m/2)? = 0.565,
and Bi; = Bi = hL/k = 800(0.04/2)/76 = 0.2105, and we then
write

XY _o (X) _1 |
®[<L)1_O’ <L>2_ 5 Foy,Fop, Bij -, Bi,

(%) — 0, Fo; = 0.565, Bi! = 4.75}
1

= 0.93 from upper left-hand
side of Fig. 5.7

x) _1 _ 1 ]
X®2\[<L>2_ 2,F02—O.565, Bi, —4.751

= 0.91 from interpolation
between lower lefthand side and
upper righthand side of Fig. 5.7

Thus, at the axial line of interest,
® = (0.93)(0.91) = 0.846

SO
T-20

m =0.846 or T =87.7°C |
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Product solutions can also be used to determine the mean tempera-
ture, O, and the total heat removal, ®, from a multidimensional object.
For example, when two or three solutions (01, ®», and perhaps ©3) are
multiplied to obtain ©, the corresponding mean temperature of the mul-
tidimensional object is simply the product of the one-dimensional mean
temperatures from eqn. (5.40)

® = 0 (Fo1,Bi;) x ®» (Fop,Bip) for two factors (5.72a)
® = 07 (Fo1,Bi1) X ®» (Foy,Bip) x ®3 (Fos,Biz) for three factors.
(5.72b)

Since ® = 1 — ©, a simple calculation shows that ® can found from &1,
®,, and ®3 as follows:

b= +P» (1 -P;) fortwo factors (5.73a)
P=P; +Pr (1 —P;) +P3(1 —P») (1 —P;) for three factors. (5.73b)

Example 5.13

For the bar described in Example 5.12, what is the mean temperature
after 10 s and how much heat has been lost at that time?

SOLUTION. For the Biot and Fourier numbers given in Example 5.12,
we find from Fig. 5.10a

®; (Fo; = 0.565,Bi; = 0.2105) = 0.10
®;, (Fop = 0.565,Bi; = 0.2105) = 0.10
and, with eqgn. (5.73a),
b= +Pp (1 -91)=0.19
The mean temperature is

T-20

©=100-20"

1-%=0.381

SO

T =20+ 80(0.81) = 84.8°C |
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Problems
5.1 Rework Example 5.1, and replot the solution, with one change.

5.2

5.3

5.4

This time, insert the thermometer at zero time, at an initial
temperature < (T; — bT).

A body of known volume and surface area and temperature T;
is suddenly immersed in a bath whose temperature is rising
as Tpath = Ti + (To — Ti)e!/T. Let us suppose that h is known,
that T = 10pcV/hA, and that t is measured from the time of
immersion. The Biot number of the body is small. Find the
temperature response of the body. Plot the response and the
bath temperature as a function of time up to t = 27. (Do not
use Laplace transform methods except, perhaps, as a check.)

A body of known volume and surface area is immersed in
a bath whose temperature is varying sinusoidally with a fre-
quency w about an average value. The heat transfer coefficient
is known and the Biot number is small. Find the temperature
variation of the body after a long time has passed, and plot it
along with the bath temperature. Comment on any interesting
aspects of the solution.

A suggested program for solving this problem:

o Write the differential equation of response.

e To get the particular integral of the complete equation,
guess that T — Tean = C1 cos wt + Co sin wt. Substitute
this in the differential equation and find C; and C» values
that will make the resulting equation valid.

e Write the general solution of the complete equation. It
will have one unknown constant in it.

e Write any initial condition you wish—the simplest one you
can think of—and use it to get rid of the constant.

e Let the time be large and note which terms vanish from
the solution. Throw them away.

e Combine two trigonometric terms in the solution into a
term involving sin(wt — B), where f = fn(wT) is the
phase lag of the body temperature.

A block of copper floats within a large region of well-stirred
mercury. The system is initially at a uniform temperature, T;.



Problems

253

5.5

5.6

5.7

5.8

5.9

5.10

There is a heat transfer coefficient, h,,, on the inside of the thin
metal container of the mercury and another one, h., between
the copper block and the mercury. The container is then sud-
denly subjected to a change in ambient temperature from T; to
Ts < T;. Predict the temperature response of the copper block,
neglecting the internal resistance of both the copper and the
mercury. Check your result by seeing that it fits both initial
conditions and that it gives the expected behavior at t — co.

Sketch the electrical circuit that is analogous to the second-
order lumped capacity system treated in the context of Fig. 5.5
and explain it fully.

A one-inch diameter copper sphere with a thermocouple in
its center is mounted as shown in Fig. 5.28 and immersed in
water that is saturated at 211°F. The figure shows the ther-
mocouple reading as a function of time during the quench-
ing process. If the Biot number is small, the center temper-
ature can be interpreted as the uniform temperature of the
sphere during the quench. First draw tangents to the curve,
and graphically differentiate it. Then use the resulting values
of dT/dt to construct a graph of the heat transfer coefficient
as a function of (Tsphere — Tsat). The result will give actual
values of h during boiling over the range of temperature dif-
ferences. Check to see whether or not the largest value of the
Biot number is too great to permit the use of lumped-capacity
methods.

A butt-welded 36-gage thermocouple is placed in a gas flow
whose temperature rises at the rate 20°C/s. The thermocou-
ple steadily records a temperature 2.4°C below the known gas
flow temperature. If pc is 3800 kJ/m3K for the thermocouple

material, what is h on the thermocouple? [h = 1006 W/m?2K.]

Check the point on Fig. 5.7 at Fo = 0.2, Bi = 10, and x/L = 0
analytically.

Prove that when Bi is large, eqn. (5.34) reduces to eqn. (5.33).

Check the point at Bi = 0.1 and Fo = 2.5 on the slab curve in
Fig. 5.10 analytically.
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875
l I I |
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1 in. dia. copper sphere
w = in water at Tgat. = 211°F
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Figure 5.28 Configuration and temperature response for
Problem 5.6

5.11 Sketch one of the curves in Fig. 5.7, 5.8, or 5.9 and identify:

e Theregion in which b.c.’s of the third kind can be replaced
with b.c.’s of the first kind.

e The region in which a lumped-capacity response can be
assumed.

e The region in which the solid can be viewed as a semi-
infinite region.

5.12 Water flows over a flat slab of Nichrome, 0.05 mm thick, which
serves as a resistance heater using AC power. The apparent
value of h is 2000 W/m?K. How much surface temperature
fluctuation will there be?
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5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Put Jakob’s bubble growth formula in dimensionless form, iden-
tifying a “Jakob number”, Ja = ¢ (Tsup — Tsat)/h sy as one of

the groups. (Ja is the ratio of sensible heat to latent heat.) Be

certain that your nondimensionalization is consistent with the

Buckingham pi-theorem.

A 7 cm long vertical glass tube is filled with water that is uni-
formly at a temperature of T = 102°C. The top is suddenly
opened to the air at 1 atm pressure. Plot the decrease of the
height of water in the tube by evaporation as a function of time
until the bottom of the tube has cooled by 0.05°C.

A slab is cooled convectively on both sides from a known ini-
tial temperature. Compare the variation of surface tempera-
ture with time as given in Fig. 5.7 with that given by eqn. (5.53)
if Bi = 2. Discuss the meaning of your comparisons.

To obtain eqgn. (5.62), assume a complex solution of the type
0 = fn(&)exp(iQ), where i = \/—1. This will assure that the
real part of your solution has the required periodicity and,
when you substitute it in egn. (5.60), you will get an easy-to-
solve ordinary d.e. in fn(&).

A certain steel cylinder wall is subjected to a temperature os-
cillation that we approximate at T = 650°C + (300°C) cos wt,
where the piston fires eight times per second. For stress de-
sign purposes, plot the amplitude of the temperature variation
in the steel as a function of depth. If the cylinder is 1 cm thick,
can we view it as having infinite depth?

A 40 cm diameter pipe at 75°C is buried in a large block of
Portland cement. It runs parallel with a 15°C isothermal sur-
face at a depth of 1 m. Plot the temperature distribution along
the line normal to the 15°C surface that passes through the
center of the pipe. Compute the heat loss from the pipe both
graphically and analytically.

Derive shape factor 4 in Table 5.4.

Verify shape factor 9 in Table 5.4 with a flux plot. Use R1/R» =
2 and Ry /L = %. (Be sure to start out with enough blank paper
surrounding the cylinders.)
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5.21 A copper block 1 in. thick and 3 in. square is held at 100°F
on one 1 in. by 3 in. surface. The opposing 1 in. by 3 in.
surface is adiabatic for 2 in. and 90°F for 1 inch. The re-
maining surfaces are adiabatic. Find the rate of heat transfer.
[Q =36.8 W]

5.22 Obtain the shape factor for any or all of the situations pic-
tured in Fig. 5.29a through j on pages 258-259. In each case,
present a well-drawn flux plot. [S, = 1.03, S¢ > S4, Sg =
1.]

5.23 Two copper slabs, 3 cm thick and insulated on the outside, are
suddenly slapped tightly together. The one on the left side is
initially at 100°C and the one on the right side at 0°C. Deter-
mine the left-hand adiabatic boundary’s temperature after 2.3
s have elapsed. [Tyan ~ 80.5°C]

Eggs cook as their  5.24 Estimate the time required to hard-cook an egg if:
proteins denature and

coagulate. The time to e The minor diameter is 45 mm.

cook depends on e k for the egg is about the same as for water. No signif-
whether a soft or hard icant heat release or change of properties occurs during
cooked egg desired. cooking.

Eggfas:r?; E:e::(()ck;z l(ox o h between the egg and the water is 140 W/m?K.
warm) into cold water e The egg is put in boiling water when the egg is at a uni-
before heating starts or form temperature of 20°C.
by placing warm eggs
directly into simmering
water [5.20].

e The egg is done when the center reaches 75°C.

5.25 Prove that T; in Fig. 5.5 cannot oscillate.

5.26 Show that when isothermal and adiabatic lines are interchanged
in a two-dimenisonal body, the new shape factor is the inverse
of the original one.

5.27 A 0.5 cm diameter cylinder at 300°C is suddenly immersed
in saturated water at 1 atm. If h = 10,000 W/m?2K, find the
centerline and surface temperatures after 0.2 s:

a. If the cylinder is copper.

b. If the cylinder is Nichrome V. [Tg¢c ~ 200°C.]

c. If the cylinder is Nichrome V, obtain the most accurate
value of the temperatures after 0.04 s that you can.
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5.28

5.29
5.30

5.31

5.32

5.33

5.34

A large, flat electrical resistance strip heater is fastened to a
firebrick wall, unformly at 15°C. When it is suddenly turned on,
it releases heat at the uniform rate of 4000 W/m?2. Plot the tem-
perature of the brick immediately under the heater as a func-
tion of time if the other side of the heater is insulated. What
is the heat flux at a depth of 1 cm when the surface reaches
200°C.

Do Experiment 5.2 and submit a report on the results.

An approximately spherical container, 2 cm in diameter, con-
taining electronic equipment is placed in wet mineral soil with
its center 2 m below the surface. The soil surface is kept at 0°C.
What is the maximum rate at which energy can be released by
the equipment if the surface of the sphere is not to exceed
30°C?

A semi-infinite slab of ice at —10°C is exposed to air at 15°C
through a heat transfer coefficient of 10 W/m?K. What is the
initial rate of melting of ice in kg/m?s? What is the asymp-
totic rate of melting? Describe the melting process in phys-
ical terms. (The latent heat of fusion of ice, hyy = 333,300
J/kg.)

One side of an insulating firebrick wall, 10 cm thick, initially
at 20°C is exposed to 1000°C flame through a heat transfer
coefficient of 230 W/m?2K. How long will it be before the other
side is too hot to touch, say at 65°C? (Estimate properties at
500°C, and assume that h is quite low on the cool side.)

A particular lead bullet travels for 0.5 sec within a shock wave
that heats the air near the bullet to 300°C. Approximate the
bullet as a cylinder 0.8 cm in diameter. What is its surface
temperature at impact if h = 600 W/m?K and if the bullet was
initially at 20°C? What is its center temperature?

A loaf of bread is removed from an oven at 125°C and set on
the (insulating) counter to cool in a kitchen at 25°C. The loaf
is 30 cm long, 15 cm high, and 12 cm wide. If k = 0.05 W/m-K
and @ = 5 x 1077 m?/s for bread, and h = 10 W/m?K, when
will the hottest part of the loaf have cooled to 60°C? [About 1
h 5 min.]
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5.35

5.36

5.37

5.38

5.39

5.40

A lead cube, 50 cm on each side, is initially at 20°C. The sur-
roundings are suddenly raised to 200°C and h around the cube
is 272 W/m?2K. Plot the cube temperature along a line from
the center to the middle of one face after 20 minutes have
elapsed.

A jet of clean water superheated to 150°C issues from a 1/16
inch diameter sharp-edged orifice into air at 1 atm, moving at
27 m/s. The coefficient of contraction of the jetis 0.611. Evap-
oration at T = Tgy begins immediately on the outside of the jet.
Plot the centerline temperature of the jet and T(v /7, = 0.6) as
functions of distance from the orifice up to about 5 m. Neglect
any axial conduction and any dynamic interactions between
the jet and the air.

A 3 cm thick slab of aluminum (initially at 50°C) is slapped
tightly against a 5 cm slab of copper (initially at 20°C). The out-
sides are both insulated and the contact resistance is neglible.
What is the initial interfacial temperature? Estimate how long
the interface will keep its initial temperature.

A cylindrical underground gasoline tank, 2 m in diameter and
4 m long, is embedded in 10°C soil with k = 0.8 W/m?K and
« = 1.3 x 1075 m?/s. water at 27°C is injected into the tank
to test it for leaks. It is well-stirred with a submerged % kW
pump. We observe the water level in a 10 cm I.D. transparent
standpipe and measure its rate of rise and fall. What rate of
change of height will occur after one hour if there is no leak-
age? Will the level rise or fall? Neglect thermal expansion and
deformation of the tank, which should be complete by the time
the tank is filled.

A 47°C copper cylinder, 3 cm in diameter, is suddenly im-
mersed horizontally in water at 27°C in a reduced gravity en-
vironment. Plot T¢y as a function of time if g = 0.76 m/s?
and if h = [2.733 + 10.448(AT°C)1/6 12 W/m?K. (Do it numer-
ically if you cannot integrate the resulting equation analyti-
cally.)

The mechanical engineers at the University of Utah end spring
semester by roasting a pig and having a picnic. The pig is
roughly cylindrical and about 26 cm in diameter. It is roasted
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5.41

5.42

5.43

5.44

5.45

over a propane flame, whose products have properties similar
to those of air, at 280°C. The hot gas flows across the pig at
about 2 m/s. If the meat is cooked when it reaches 95°C, and
if it is to be served at 2:00 pm, what time should cooking com-
mence? Assume Bi to be large, but note Problem 7.40. The pig
is initially at 25°C.

People from cold northern climates know not to grasp metal
with their bare hands in subzero weather. A very slightly frosted
peice of, say, cast iron will stick to your hand like glue in, say,
—20°C weather and might tear off patches of skin. Explain this
quantitatively.

A 4 cm diameter rod of type 304 stainless steel has a very
small hole down its center. The hole is clogged with wax that
has a melting point of 60°C. The rod is at 20°C. In an attempt
to free the hole, a workman swirls the end of the rod—and
about a meter of its length—in a tank of water at 80°C. If h
is 688 W/m?K on both the end and the sides of the rod, plot
the depth of the melt front as a function of time up to say, 4
cm.

A cylindrical insulator contains a single, very thin electrical re-
sistor wire that runs along a line halfway between the center
and the outside. The wire liberates 480 W/m. The thermal con-
ductivity of the insulation is 3 W/m?2K, and the outside perime-
ter is held at 20°C. Develop a flux plot for the cross section,
considering carefully how the field should look in the neigh-
borhood of the point through which the wire passes. Evaluate
the temperature at the center of the insulation.

Along, 10 cm square copper bar is bounded by 260°C gas flows
on two opposing sides. These flows impose heat transfer coef-
ficients of 46 W/m?K. The two intervening sides are cooled by
natural convection to water at 15°C, with a heat transfer coef-
ficient of 30 W/m?2K. What is the heat flow through the block
and the temperature at the center of the block? (This could
be a pretty complicated problem, but take the trouble to think
about Biot numbers before you begin.)

Lord Kelvin made an interesting estimate of the age of the earth
in 1864. He assumed that the earth originated as a mass of
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5.46

5.47

5.48

molten rock at 4144 K (7000°F) and that it had been cooled
by outer space at 0 K ever since. To do this, he assumed
that Bi for the earth is very large and that cooling had thus
far penetrated through only a relatively thin (one-dimensional)
layer. Using orock = 1.18 X 1075 m/s? and the measured sur-
face temperature gradient of the earth, %"C/m, Find Kelvin’s
value of Earth’s age. (Kelvin’s result turns out to be much
less than the accepted value of 4 billion years. His calcula-
tion fails because internal heat generation by radioactive de-
cay of the material in the surface layer causes the surface
temperature gradient to be higher than it would otherwise
be.)

A pure aluminum cylinder, 4 cm diam. by 8 cm long, is ini-
tially at 300°C. It is plunged into a liquid bath at 40°C with
h = 500 W/m?K. Calculate the hottest and coldest tempera-
tures in the cylinder after one minute. Compare these results
with the lumped capacity calculation, and discuss the compar-
ison.

When Ivan cleaned his freezer, he accidentally put a large can
of frozen juice into the refrigerator. The juice can is 17.8 cm
tall and has an 8.9 cm 1.D. The can was at —15°C in the freezer,
but the refrigerator is at 4°C. The can now lies on a shelf of
widely-spaced plastic rods, and air circulates freely over it.
Thermal interactions with the rods can be ignored. The ef-
fective heat transfer coefficient to the can (for simultaneous
convection and thermal radiation) is 8 W/m?K. The can has
a 1.0 mm thick cardboard skin with k = 0.2 W/m-K. The
frozen juice has approximately the same physical properties
as ice.

a. How important is the cardboard skin to the thermal re-
sponse of the juice? Justify your answer quantitatively.

b. If Ivan finds the can in the refrigerator 30 minutes after
putting it in, will the juice have begun to melt?

A cleaning crew accidentally switches off the heating system
in a warehouse one Friday night during the winter, just ahead
of the holidays. When the staff return two weeks later, the
warehouse is quite cold. In some sections, moisture that con-
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5.49

5.50

5.51

5.52

densed has formed a layer of ice 1 to 2 mm thick on the con-
crete floor. The concrete floor is 25 cm thick and sits on com-
pacted earth. Both the slab and the ground below it are now
at 20°F. The building operator turns on the heating system,
quickly warming the air to 60°F. If the heat transfer coefficient
between the air and the floor is 15 W/m?2K, how long will it take
for the ice to start melting? Take &Xconer = 7.0 x 1077 m?2/s and
kconer = 1.4 W/m-K, and make justifiable approximations as
appropriate.

A thick wooden wall, initially at 25°C, is made of fir. It is sud-
denly exposed to flames at 800°C. If the effective heat transfer
coefficient for convection and radiation between the wall and
the flames is 80 W/m?K, how long will it take the wooden wall
to reach its ignition temperature of 430°C?

Cold butter does not spread as well as warm butter. A small
tub of whipped butter bears a label suggesting that, before
use, it be allowed to warm up in room air for 30 minutes after
being removed from the refrigerator. The tub has a diame-
ter of 9.1 cm with a height of 5.6 cm, and the properties of
whipped butter are: k = 0.125 W/m-K, ¢, = 2520 J/kg-K, and
p = 620 kg/m3. Assume that the tub’s cardboard walls of-
fer negligible thermal resistance, that h = 10 W/m?K outside
the tub. Negligible heat is gained through the low conductivity
lip around the bottom of the tub. If the refrigerator temper-
ature was 5°C and the tub has warmed for 30 minutes in a
room at 20°C, find: the temperature in the center of the but-
ter tub, the temperature around the edge of the top surface of
the butter, and the total energy (in J) absorbed by the butter
tub.

A two-dimensional, 90° annular sector has an adiabatic inner
arc, v = v, and an adiabatic outer arc, v = r,. The flat sur-
face along € = 0 is isothermal at T, and the flat surface along
0 = 1r/2 is isothermal at T>. Show that the shape factor is
S = (2/m) In(re/779).

Suppose that T (t) is the time-dependent environmental tem-
perature surrounding a convectively-cooled, lumped object.
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a. Show that egn. (1.20) leads to

d (T — Teo) ATw
at T —Te)+ = dt

where the time constant T is defined as usual.

b. If the initial temperature of the object is Tj, use either
an integrating factor or a Laplace transform to show that
T(t)is

t
T(t) = Too (£)+[T; — Teo(0)] e H/T—e7t/T JO eS/T%Tw(S) ds.

5.53 Use the result of Problem 5.52 to verify eqn. (5.13).

5.54 Suppose that a thermocouple with an initial temperature T; is
placed into an airflow for which its Bi <« 1 and its time con-
stant is T. Suppose also that the temperature of the airflow
varies harmonically as T (t) = T; + AT cos (wt).

a. Use the result of Problem 5.52 to find the temperature of
the thermocouple, Ti(t), for t > 0. (If you wish, note
that the real part of e®“! is Re {ei‘”t} = cos wt and use
complex variables to do the integration.)

b. Approximate your result for t > T. Then determine the
value of Ti.(t) for wT <« 1 and for wT > 1. Explain
in physical terms the relevance of these limits to the fre-
quency response of the thermocouple.

c. If the thermocouple has a time constant of T = 0.1 sec,
estimate the highest frequency temperature variation that
it will measure accurately.

5.55 A particular tungsten lamp filament has a diameter of 100 um
and sits inside a glass bulb filled with inert gas. The effec-
tive heat transfer coefficient for conduction and radiation is
750 W/m-K and the electrical current is at 60 Hz. How much
does the filament’s surface temperature fluctuate if the gas
temperature is 200°C and the average wire temperature is 2900°C?

5.56 The consider the parameter  in eqn. (5.41).

a. If the timescale for heat to diffuse a distance § is 62/ «x, ex-
plain the physical significance of ¢ and the consequence
of large or small values of .
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b. Show that the timescale for the thermal response of a wire
with Bi < 11is pcpd/(2h). Then explain the meaning of
the new parameter ¢ = pcpwo/(41Th).

c. When Bi « 1, is ¢ or ¢ a more relevant parameter?
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6. Laminar and turbulent boundary
layers

In cold weather, if the air is calm, we are not so much chilled as when there
is wind along with the cold; for in calm weather, our clothes and the air
entangled in them receive heat from our bodies; this heat...brings them
nearer than the surrounding air to the temperature of our skin. But in
windy weather, this heat is prevented...from accumulating; the cold air,
by its impulse. . .both cools our clothes faster and carries away the warm
air that was entangled in them.

notes on “The General Effects of Heat”, Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s perception about forced convection (above) represents a
very correct understanding of the way forced convective cooling works.
When cold air moves past a warm body, it constantly sweeps away warm
air that has become, as Black put it, “entangled” with the body and re-
places it with cold air. In this chapter we learn to form analytical descrip-
tions of these convective heating (or cooling) processes.

Our aim is to predict h and h, and it is clear that such predictions
must begin in the motion of fluid around the bodies that they heat or
cool. It is by predicting such motion that we will be able to find out how
much heat is removed during the replacement of hot fluid with cold, and
vice versa.

Flow boundary layer

Fluids flowing past solid bodies adhere to them, so a region of variable
velocity must be built up between the body and the free fluid stream, as

269
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-
T
y=6
u
0 \
u
o x
0.99u_

Figure 6.1 A boundary layer of thickness 6.

indicated in Fig. 6.1. This region is called a boundary layer, which we will
often abbreviate as b.l. The b.l. has a thickness, §. The boundary layer
thickness is arbitrarily defined as the distance from the wall at which
the flow velocity approaches to within 1% of u.. The boundary layer
is normally very thin in comparison with the dimensions of the body
immersed in the flow.!

The first step that has to be taken before h can be predicted is the
mathematical description of the boundary layer. This description was
first made by Prandtl? (see Fig. 6.2) and his students, starting in 1904,
and it depended upon simplifications that followed after he recognized
how thin the layer must be.

The dimensional functional equation for the boundary layer thickness
on a flat surface is

0 =M, p,u,x)

where x is the length along the surface and p and u are the fluid density
in kg/m3 and the dynamic viscosity in kg/m-s. We have five variables in

lwe qualify this remark when we treat the b.l. quantitatively.

2Prandtl was educated at the Technical University in Munich and finished his doctor-
ate there in 1900. He was given a chair in a new fluid mechanics institute at Gottingen
University in 1904—the same year that he presented his historic paper explaining the
boundary layer. His work at Gottingen, during the period up to Hitler’s regime, set the
course of modern fluid mechanics and aerodynamics and laid the foundations for the
analysis of heat convection.
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kg, m, and s, so we anticipate two pi-groups:

PUX  UwX
v

g = fn(Rey) Re, = (6.1)

where v is the kinematic viscosity u/p and Rey is called the Reynolds
number. It characterizes the relative influences of inertial and viscous
forces in a fluid problem. The subscript on Re—x in this case—tells
what length it is based upon.

We discover shortly that the actual form of eqn. (6.1) for a flat surface,
where 1, remains constant, is

4.92
= -2
Re, 6.2)

x|

which means that if the velocity is great or the viscosity is low, 6/x will
be relatively small. Heat transfer will be relatively high in such cases. If
the velocity is low, the b.l. will be relatively thick. A good deal of nearly

Figure 6.2 Ludwig Prandil (1875-1953).
(Courtesy of Appl. Mech. Rev. [6.1])
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Osborne Reynolds (1842 to 1912)
Reynolds was born in Ireland but he
taught at the University of Manchester.
He was a significant contributor to the
subject of fluid mechanics in the late
19th C. His original laminar-to-
turbulent flow transition experiment,
pictured below, was still being used as
a student experiment at the University
of Manchester in the 1970s.

¢Ink supply

E S e <2372
- = 2 = ¢

/f' :
Water
flow

-

c
— ]
o-4

[

Uav

Figure 6.3 Osborne Reynolds and his laminar-turbulent flow
transition experiment. (Detail from a portrait at the University
of Manchester.)

stagnant fluid will accumulate near the surface and be “entangled” with
the body, although in a different way than Black envisioned it to be.

The Reynolds number is named after Osborne Reynolds (see Fig. 6.3),
who discovered the laminar-turbulent transition during fluid flow in a
tube. He injected ink into a steady and undisturbed flow of water and
found that, beyond a certain average velocity, uay, the liquid streamline
marked with ink would become wobbly and then break up into increas-
ingly disorderly eddies, and it would finally be completely mixed into the
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Typical local velocity profile
in the laminar regime

y =0
— -
- Rey
0 U u
Laminar Region of sporadic bursts of ———== Fully turbulent
v flow regime | vortices resulting from local boundary layer
U i [ collapse of the unstable flow field

LIS IR

! O )
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T i < v x P Re,
| Re,235x10 . o Re,<4x10
Re, =0 | X Dimensionless distance, Re, = —
L 5 4.92x Viscous
- sublayer
VRe,

Figure 6.4 Boundary layer on a long, flat surface with a sharp
leading edge.

water, as is suggested in the sketch.

To define the transition, we first note that (u#ay)crit, the transitional
value of the average velocity, must depend on the pipe diameter, D, on
u, and on p—four variables in kg, m, and s. There is therefore only one
pi-group:

pD (Uay)crit

Recritical = ——————— (6.3)
u

The maximum Reynolds number for which fully developed laminar flow
in a pipe will always be stable, regardless of the level of background noise,
is 2100. In a reasonably careful experiment, laminar flow can be made
to persist up to Re = 10,000. With enormous care it can be increased
still another order of magnitude. But the value below which the flow will
always be laminar—the critical value of Re—is 2100.

Much the same sort of thing happens in a boundary layer. Figure 6.4
shows fluid flowing over a plate with a sharp leading edge. The flow is
laminar up to a transitional Reynolds number based on x:

Rexcritical = M (64)
%
At larger values of x the b.l. exhibits sporadic vortexlike instabilities over
a fairly long range, and it finally settles into a fully turbulent b.l.
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For the boundary layer shown, Rex ..., = 3.5 x 10°, but the actual
onset of turbulent behavior depends strongly on the amount of turbu-
lence in the flow over the plate, the precise shape of the leading edge,
the roughness of the wall, and the presence of acoustic or structural vi-
brations [6.2, §5.5]. On a flat plate, a boundary layer remains laminar
even for very large disturbances when Re, < 6 x 10%. With relatively
undisturbed conditions, transition occurs for Re, in the range of 3 x 10°
to 5 x 10, and in very careful laboratory experiments, turbulent tran-
sition can be delayed until Rey ~ 3 x 10° or so. Turbulent transition
is essentially always complete before Rey = 4 x 105 and usually much
earlier.

These specifications of the critical Re are restricted to flat surfaces. If
the surface is curved into the flow, as shown in Fig. 6.1, turbulence might
be triggered at greatly lowered values of Rey.

Thermal boundary layer

If the wall is at a temperature T,,, different from that of the free stream,
T, there is a thermal boundary layer thickness, 6;—different from the
flow b.l. thickness, 6. A thermal b.l. is pictured in Fig. 6.5. Now, with ref-
erence to this picture, we equate the heat conducted away from the wall
by the fluid to the same heat transfer expressed in terms of a convective
heat transfer coefficient:

conduction
into the fluid

where ky is the conductivity of the fluid. Notice two things about this
result. In the first place, it is correct to express heat removal at the wall
using Fourier’s law of conduction, because there is no fluid motion in the
direction of q. The other point is that while eqn. (6.5) looks like a b.c. of
the third kind, it is not. This condition defines h within the fluid instead
of specifying it as known information on the boundary. Equation (6.5)
can be arranged in the form

5 ( Tw—-T )
Tw — Teo hL
—_—t =7 = — = Nu;, the Nusselt number 6.5a
3(y/L) Ky o N (6-52)

y/L=0
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5. — The value of y at which
t (Tw—T)=99%of (Tyy —T_)

plate.

where L is a characteristic dimension of the body under consideration—
the length of a plate, the diameter of a cylinder, or [if we write eqn. (6.5)
at a point of interest along a flat surface] Nuy = hx/k¢. From Fig. 6.5 we
see immediately that the physical significance of Nu is given by

L
NuL = 5 ; (6.6)
In other words, the Nusselt number is inversely proportional to the thick-
ness of the thermal b.L.

The Nusselt number is named after Wilhelm Nusselt,> whose work on
convective heat transfer was as fundamental as Prandtl’s was in analyzing
the related fluid dynamics (see Fig. 6.6).

We now turn to the detailed evaluation of h. And, as the preceding
remarks make very clear, this evaluation will have to start with a devel-
opment of the flow field in the boundary layer.

3Nusselt finished his doctorate in mechanical engineering at the Technical Univer-
sity in Munich in 1907. During an indefinite teaching appointment at Dresden (1913 to
1917) he made two of his most important contributions: He did the dimensional anal-
ysis of heat convection before he had access to Buckingham and Rayleigh’s work. In so
doing, he showed how to generalize limited data, and he set the pattern of subsequent
analysis. He also showed how to predict convective heat transfer during film conden-
sation. After moving about Germany and Switzerland from 1907 until 1925, he was
named to the important Chair of Theoretical Mechanics at Munich. During his early
years in this post, he made seminal contributions to heat exchanger design method-
ology. He held this position until 1952, during which time his, and Germany’s, great
influence in heat transfer and fluid mechanics waned. He was succeeded in the chair
by another of Germany’s heat transfer luminaries, Ernst Schmidt.

Figure 6.5 The thermal boundary layer
during the flow of cool fluid over a warm
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Figure 6.6 Ernst Kraft Wilhelm Nusselt
(1882-1957). This photograph, provided
by his student, G. Liick, shows Nusselt at
the Kesselberg waterfall in 1912. He was
an avid mountain climber.

6.2 Laminar incompressible boundary layer on a flat
surface

We predict the boundary layer flow field by solving the equations that
express conservation of mass and momentum in the b.l. Thus, the first
order of business is to develop these equations.

Conservation of mass—The continuity equation

A two- or three-dimensional velocity field can be expressed in vectorial
form:

U=1iu+jv +kw

where u, v, and w are the x, v, and z components of velocity. Figure 6.7
shows a two-dimensional velocity flow field. If the flow is steady, the
paths of individual particles appear as steady streamlines. The stream-
lines can be expressed in terms of a stream function, @(x,y) = con-
stant, where each value of the constant identifies a separate streamline,
as shown in the figure.

The velocity, i, is directed along the streamlines so that no flow can
cross them. Any pair of adjacent streamlines thus resembles a heat flow
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Yix,y) = constant

/—’———‘Wx,y) = constant

X

Figure 6.7 A steady, incompressible, two-dimensional flow
field represented by streamlines, or lines of constant .

channel in a flux plot (Section 5.7); such channels are adiabatic—no heat
flow can cross them. Therefore, we write the equation for the conserva-
tion of mass by summing the inflow and outflow of mass on two faces of
a triangular element of unit depth, as shown in Fig. 6.7:

pvdx —pudy =0 (6.7)

If the fluid is incompressible, so that p = constant along each streamline,
then

—vdx+udy =0 (6.8)

But we can also differentiate the stream function along any streamline,
Y (x,y) = constant, in Fig. 6.7:

_w dx+a—(’u

= oxly 3y dy =0 (6.9)

dy

X

If we compare eqgns. (6.8) and (6.9), we immediately see that the coef-
ficients of dx and dy must be the same, so
oy

oy _ oy
~ Ix ) and u—ay

(6.10)

pe
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Furthermore,
o’y oy
0ydx 0x0y
so it follows that
ou ov
Ix @ =0 (6.11)

This is called the two-dimensional continuity equation for incompress-
ible flow, because it expresses mathematically the fact that the flow is
continuous; it has no breaks in it. In three dimensions, the continuity
equation for an incompressible fluid is

. ou oJv ow
v-u—a-i—@-FE—o

Example 6.1

Fluid moves with a uniform velocity, 1, in the x-direction. Find the
stream function and see if it gives plausible behavior (see Fig. 6.8).

SOLUTION. U = U, and v = 0. Therefore, from eqns. (6.10)

uoo=a—(’u and O—a—(’u

ayx _aXy

Integrating these equations, we get
Y =Uoy +fn(x) and ¢ =0+ fn(y)

Comparing these equations, we get fn(x) = constant and fn(y) =
U Y+ constant, so

Y = Uy + constant |

This gives a series of equally spaced, horizontal streamlines, as we would
expect (see Fig. 6.8). We set the arbitrary constant equal to zero in the
figure.
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'T V=, Figure 6.8 Streamlines in a uniform
0 - horizontal flow field, ¢ = U Y.

Conservation of momentum

The momentum equation in a viscous flow is a complicated vectorial ex-
pression called the Navier-Stokes equation. Its derivation is carried out
in any advanced fluid mechanics text (see, e.g., [6.3, Chap. III]). We shall
offer a very restrictive derivation of the equation—one that applies only
to a two-dimensional incompressible b.l. flow, as shown in Fig. 6.9.

Here we see that shear stresses act upon any element such as to con-
tinuously distort and rotate it. In the lower part of the figure, one such
element is enlarged, so we can see the horizontal shear stresses? and
the pressure forces that act upon it. They are shown as heavy arrows.
We also display, as lighter arrows, the momentum fluxes entering and
leaving the element.

Notice that both x- and y-directed momentum enters and leaves the
element. To understand this, one can envision a boxcar moving down
the railroad track with a man standing, facing its open door. A child
standing at a crossing throws him a baseball as the car passes. When
he catches the ball, its momentum will push him back, but a component
of momentum will also jar him toward the rear of the train, because
of the relative motion. Particles of fluid entering element A will likewise
influence its motion, with their x components of momentum carried into
the element by both components of flow.

The velocities must adjust themselves to satisfy the principle of con-
servation of linear momentum. Thus, we require that the sum of the
external forces in the x-direction, which act on the control volume, A,
must be balanced by the rate at which the control volume, A, forces x-

4The stress, T, is often given two subscripts. The first one identifies the direction
normal to the plane on which it acts, and the second one identifies the line along which
it acts. Thus, if both subscripts are the same, the stress must act normal to a surface—it
must be a pressure or tension instead of a shear stress.
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e undisturbed flow

in th
Pressure | bl s pix, only)

adjacent to th

]
PAY e «-l}+ jp dx]dy
X
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X
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L dx —d
—/
u(pv)dx Tyxdx

Figure 6.9 Forces acting in a two-dimensional incompressible
boundary layer.

directed momentum out. The external forces, shown in Fig. 6.9, are

0
(Tyx+ Tyxdy>dx—'ryxdx+pdy— (p+apdx) dy

oy 0x
[ O0Tyx ap
= ( 3y 8x> dx dy

The rate at which A loses x-directed momentum to its surroundings is

opu
2
(pu + Ix

2

dx) dy —pu’dy + [u(pv) + apagt/v dy] dx

_ (opu®  dpuv
puvdx—( Ix + 3y )dxdy
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We equate these results and obtain the basic statement of conserva-
tion of x-directed momentum for the b.l.:
dpu? dpuv

dp B
dydx—dxdxdy—( Ix + 3y )dxdy

O0Tyx
oy

The shear stress in this result can be eliminated with the help of Newton’s
law of viscous shear:

ou
Tyx = I«l@

so the momentum equation becomes
0 ( 0w\ _dp _ (opu  dpuv
oy \Fay ) ax ~ \ox oy
Finally, we remember that the analysis is limited to p ~ constant, and

we limit use of the equation to temperature ranges in which y = constant.
Then

ou? ouv _ 1ldp 0%u

This is one form of the steady, two-dimensional, incompressible bound-
ary layer momentum equation. Although we have taken p ~ constant, a
more complete derivation reveals that the result is valid for compress-
ible flow as well. If we multiply eqgn. (6.11) by u and subtract the result
from the left-hand side of eqgn. (6.12), we obtain a second form of the
momentum equation:

ou_ ou_ _1dp,
u8x+v8y __pdx+vay2 (6.13)

Equation (6.13) has a number of so-called boundary layer approxima-
tions built into it:

e |0u/dx| is generally < |ou/ovy|.
e v is generally « u.

o p#in(y)
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The Bernoulli equation for the free stream flow just above the bound-
ary layer where there is no viscous shear,

2

p | Ug
=~ + — = constant
P 2
can be differentiated and used to eliminate the pressure gradient,
ldp _ dus
pdx T dx

so from eqn. (6.12):
ou? . o(uv) ° Ao +v32u
0x oy T dx 07?2
And if there is no pressure gradient in the flow—if p and u., are constant

as they would be for flow past a flat plate—then eqns. (6.12), (6.13), and
(6.14) become

(6.14)

ou?  o(uv) ou ou o%u
=t 5y —ua+v@—vﬁ (6.15)

Predicting the velocity profile in the laminar boundary layer
without a pressure gradient

Exact solution. Two strategies for solving egn. (6.15) for the velocity
profile have long been widely used. The first was developed by Prandtl’s
student, H. Blasius,” before World War I. It is exact, and we shall sketch it
only briefly. First we introduce the stream function, y, into eqn. (6.15).
This reduces the number of dependent variables from two (v and v) to
just one—namely, . We do this by substituting eqns. (6.10) in eqn. (6.15):

oy 3y  owory By

0y dydx 0x 0y2 v8y3

(6.16)

It turns out that eqn. (6.16) can be converted into an ordinary d.e.
with the following change of variables:

P(x,y) = Juxvx f(n) where n= %’;y (6.17)

>Blasius achieved great fame for many accomplishments in fluid mechanics and then
gave it up. He is quoted as saying: “I decided that I had no gift for it; all of my ideas
came from Prandtl.”
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where f(n) is an as-yet-undertermined function. [This transformation is
rather similar to the one that we used to make an ordinary d.e. of the
heat conduction equation, between eqns. (5.44) and (5.45).] After some
manipulation of partial derivatives, this substitution gives (Problem 6.2)

d>f d3 f 3
f —dnz + 2—61,73 =0 (6.18)
and
u df v 1 af B
Uo dn Juwvix 2 (ndn ) 19

The boundary conditions for this flow are

u(y=0)=0 or af =0
an|,-o

U(Yy = ©) =Us Or ﬂ =1 ( (6.20)
an | p_e

v(y=0)=0 or f(n=0)=0

The solution of egn. (6.18) subject to these b.c.’s must be done numeri-
cally. (See Problem 6.3.)

The solution of the Blasius problem is listed in Table 6.1, and the
dimensionless velocity components are plotted in Fig. 6.10. The u com-
ponent increases from zero at the wall (n = 0) to 99% of U at n = 4.92.
Thus, the b.l. thickness is given by

1)
VVX [ U

or, as we anticipated earlier [eqn. (6.2)],

S 492 492

X Juwx/v  Rey

4.92 =

Concept of similarity. The exact solution for u(x,y) reveals a most
useful fact—namely, that u can be expressed as a function of a single
variable, n:

) =f'(y ufm)

U VX
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Table 6.1 Exact velocity profile in the boundary layer on a flat
surface with no pressure gradient

Ve [ VX U U VX[Vl
n fn) f'(n) (nf' = 1J/2 £ ()
0.00 0.00000 0.00000 0.00000 0.33206
0.20 0.00664 0.06641 0.00332 0.33199
0.40 0.02656 0.13277 0.01322 0.33147
0.60 0.05974 0.19894 0.02981 0.33008
0.80 0.10611 0.26471 0.05283 0.32739
1.00 0.16557 0.32979 0.08211 0.32301
2.00 0.65003 0.62977 0.30476 0.26675
3.00 1.39682 0.84605 0.57067 0.16136
4.00 2.30576 0.95552 0.75816 0.06424
4.918 3.20169 0.99000 0.83344 0.01837
6.00 4.27964 0.99898 0.85712 0.00240
8.00 6.27923 1.00000~ 0.86039 0.00001

This is called a similarity solution. To see why, we solve eqn. (6.2) for

U 4.92

vx  8(x)

and substitute this in f'(y+/U«/vx). The result is

r U Y
i Fresl ©-21
The velocity profile thus has the same shape with respect to the b.l.
thickness at each x-station. We say, in other words, that the profile is
similar at each station. This is what we found to be true for conduction
into a semi-infinite region. In that case [recall eqn. (5.51)], x/+/t always
had the same value at the outer limit of the thermally disturbed region.
Boundary layer similarity makes it especially easy to use a simple
approximate method for solving other b.l. problems. This method, called
the momentum integral method, is the subject of the next subsection.

Example 6.2

Air at 27°C blows over a flat surface with a sharp leading edge at
1.5 m/s. Find the b.L. thickness % m from the leading edge. Check the
b.l. assumption that u > v at the trailing edge.
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Figure 6.10 The dimensionless velocity components in a lam-
inar boundary layer.

SOLUTION. The dynamic and kinematic viscosities are y = 1.853 x
107> kg/m-s and v = 1.566 x 107> m?/s. Then

Uox  1.5(0.5)
~1.566 x 10-5

Re, = = 47,893
The Reynolds number is low enough to permit the use of a laminar
flow analysis. Then

4.92x  4.92(0.5)

- - ~0.01124 = 1.124
Rex  vazsos 0 cm

0

(Remember that the b.l. analysis is only valid if §/x < 1. In this case,
0/x = 1.124/50 = 0.0225.) From Fig. 6.10 or Table 6.1, we observe
that v/u is greatest beyond the outside edge of the b.l, at large n.
Using data from Table 6.1 at n = 8, v at x = 0.5 m is

-5
~0.8604 :0‘8604\/(1.566)(10 )(1.5)

X Vi (0.5)
= 0.00590 m/s
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or, since u/u«. — 1 at large n

v_ v 009590 _ 460303 u
U Ue 1.5

Since v grows larger as x grows smaller, the condition v < u is not sat-
isfied very near the leading edge. There, the b.l. approximations them-
selves break down. We say more about this breakdown after eqn. (6.34).

Momentum integral method.® A second method for solving the b.l. mo-
mentum equation is approximate and much easier to apply to a wide
range of problems than is any exact method of solution. The idea is this:
We are not really interested in the details of the velocity or temperature
profiles in the b.l., beyond learning their slopes at the wall. [These slopes
give us the shear stress at the wall, T,y = pu(du/0y)y-o, and the heat
flux at the wall, g = —k(0T/0y)y-0.] Therefore, we integrate the b.l.
equations from the wall, y = 0, to the b.l. thickness, v = §, to make ordi-
nary d.e.’s of them. It turns out that while these much simpler equations
do not reveal anything new about the temperature and velocity profiles,
they do give quite accurate explicit equations for T, and g, .

Let us see how this procedure works with the b.l. momentum equa-
tion. We integrate eqn. (6.15), as follows, for the case in which there is
no pressure gradient (dp/dx = 0):

592y

0 du? d(uv) _y 4

0 0x oy Y=V o 2 4
At y = 6, u can be approximated as the free stream value, 11, and other
quantities can also be evaluated at = 6 just as though y were infinite:

J(Sauzd + [(uv) - (uv) ] =V (zm) - (zm)
0 ax y . yy:(Sl \ y:Ol ay y:(S ay y:()
—

5
dy+J
0

Y

=Uw Vo =0
=0
(6.22)
The continuity equation (6.11) can be integrated thus:
S du
o —Vypeg = — | — 6.23
Voo = Vy=0 o 3x (6.23)
=0

6This method was developed by Pohlhausen, von Karman, and others. See the dis-
cussion in [6.3, Chap. XII].
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Multiplying this by u. gives

1)
Ul — _J U d
0o O0x

Using this result in eqn. (6.22), we obtain

)
JO a[u(u —U)]dy = -v o—

Finally, we note that u(ou/0y),-o is the shear stress on the wall, T, =
Tw (x only), so this becomes’

o(x)
% UU — Ue) dy = —%U (6.24)
0

Equation (6.24) expresses the conservation of linear momentum in
integrated form. It shows that the rate of momentum loss caused by the
b.l. is balanced by the shear force on the wall. When we use it in place of
eqn. (6.15), we are said to be using an integral method. To make use of
eqn. (6.24), we first nondimensionalize it as follows:

% [5 :JL (% - 1) d @)] - _u:(s a‘og?y/?;))

=0
_ _Tw(x) _ _l
pov S5Crx) (6.25)

where Ty /(pu? /2) is defined as the skin friction coefficient, C £

Equation (6.25) will be satisfied precisely by the exact solution (Prob-
lem 6.4) for u/u. However, the point is to use eqn. (6.25) to determine
U/U» when we do not already have an exact solution. To do this, we
recall that the exact solution exhibits similarity. First, we guess the so-
lution in the form of eqn. (6.21): u/u~ = fn(y /). This guess is made
in such a way that it will fit the following four things that are true of the
velocity profile:

e U/Uo=0 at y/6=0
e U/Uo,=1 at y/5=1 (6.26)

. d(%)/d(%)zo at y/5 =1

“The interchange of integration and differentiation is consistent with Leibnitz’s rule
for differentiation of an integral (Problem 6.14).
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e and from eqn. (6.15), we know that at y/é = O:

Wy, U,
— Y 552
\aaf—CJ Way oy y=0
=0 =0
SO
0% (U/Uw)
—_— =0 6.27
3I2 | 5m0 (6.27)

If fn(y /) is written as a polynomial with four constants—a, b, c,
and d—in it,

2 3
u _ Y Y Y
um_a+b6+c(6> +d(6) (6.28)

the four things that are known about the profile give
e 0 = a, which eliminates a immediately
e 1=0+b+c+d
e 0=b+2c+3d

e 0 = 2¢, which eliminates ¢ as well

Solving the middle two equations (above) for b and d, we obtain d = —%
and b = +%, SO

u _3y 1 (y)3

U 26 2\6 (6.29)

This approximate velocity profile is compared with the exact Blasius
profile in Fig. 6.11, and they prove to be equal within a maximum error
of 8%. The only remaining problem is then that of calculating 6(x). To
do this, we substitute eqn. (6.29) in eqn. (6.25) and get, after integration

(see Problem 6.5):
d 39 v 3
~ax 19 (280) | = s (3) (6-30)

or
_39 (E) (1) ast _ v
280 \3/\2/) dx = uUe
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Figure 6.11 Comparison of the third-degree polynomial fit
with the exact b.l. velocity profile. (Notice that the approximate
result has been forced to #/u« = 1 instead of 0.99 at y = §.)

We integrate this using the b.c. 5> = 0 at x = 0:

280 vx
52 ="
13 U
or
é _ 4.64 (6.31)
X Re,

This b.l. thickness is of the correct functional form, and the constant is
low by only 5.6%.
The skin friction coefficient

The fact that the function f(n) gives all information about flow in the b.l.
must be stressed. For example, the shear stress can be obtained from it
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by using Newton’s law of viscous shear:

= HUx <df an)
y=0 dl’] ay =0

But from Fig. 6.10 and Table 6.1, we see that (d°f/dn?)n-o = 0.33206,
SO

T, = 0.332 “”T"" JRex (6.32)

The integral method that we just outlined would have given 0.323 for the
constant in egn. (6.32) instead of 0.332 (Problem 6.6).

The local skin friction coefficient, or local skin drag coefficient, is de-
fined as

_ Tw _ 0.664
"~ pu%/2  Rex

The overall skin friction coefficient, ff, is based on the average of the
shear stress, T, over the length, L, of the plate

L L
_ 1 pus 0.664 pu v
== = =1.32 —
Tw LLTW dx 2L Jo VUX ]V dx 328 2 UL

—  1.328
f= ~Rer

As a matter of interest, we note that Cy(x) approaches infinity at the
leading edge of the flat surface. This means that to stop the fluid that
first touches the front of the plate—dead in its tracks—would require
infinite shear stress right at that point. Nature, of course, will not allow
such a thing to happen; and it turns out that the boundary layer analysis
is not really valid right at the leading edge.

In fact, the range x < 56 is too close to the edge to use this analysis
with accuracy because the b.l. is relatively thick and v is no longer <« u.
With eqgn. (6.2), this converts to

Cy (6.33)

SO

(6.34)

x > 600v/u. for aboundary layer to exist
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or simply Rey = 600. In Example 6.2, this condition is satisfied for all
x’s greater than about 6 mm. This region is usually very small.

Example 6.3

Calculate the average shear stress and the overall friction coefficient
for the surface in Example 6.2 if its total length is L = 0.5 m. Com-
pare T, with T, at the trailing edge. At what point on the surface
does T, = T? Finally, estimate what fraction of the surface can
legitimately be analyzed using boundary layer theory.

SOLUTION.
1.328  1.328
_ - = 0.00607
I~ JReos /47,893
and
2 2
Ty = Pho T, = 11830157 ) 60607 = 0.00808 kg/m.-s?
2 2 —

N/m?

(This is very little drag. It amounts only to about 1/50 ounce/m?.)

At x =L,
Tw (X) _pu3/2[0.664/VRe, | 1
Tw lx-r pu/2|1.328/yRef| 2
and
(%) =Ty where 0664 1328
w = tw \/} = \/ﬁ

so the local shear stress equals the average value, where

X=3m or x_1
-8 L 4

Thus, the shear stress, which is initially infinite, plummets to T, one-
fourth of the way from the leading edge and drops only to one-half
of T,y in the remaining 75% of the plate.
The boundary layer assumptions fail when
1.566 x 107>

x <600 2 = 60022212 " _ 00063 m
Ueo 1.5

Thus, the preceding analysis should be good over almost 99% of the
0.5 m length of the surface. |
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6.3

The energy equation

Derivation

We now know how fluid moves in the b.l. Next, we must extend the heat
conduction equation to allow for the motion of the fluid. This equation
can be solved for the temperature field in the b.l., and its solution can be
used to calculate h, using Fourier’s law:

q k oT
h = = — = (6.35)

To predict T, we extend the analysis done in Section 2.1. Figure 2.4
shows an element of a solid body subjected to a temperature field. We
allow this volume to contain fluid with a velocity field i (x, v, z) in it, as
shown in Fig. 6.12. We make the following restrictive approximations:

The fluid is incompressible. This means that p is constant for each
tiny parcel of fluid; we shall make the stronger approximation that p
is constant for all parcels of fluid. This approximation is reasonable
for most liquid flows and for gas flows moving at speeds less than
about 1/3 the speed of sound. We have seen in Sect. 6.2 that V -1ii =
0 for incompressible flow.

Pressure variations in the flow are not large enough to affect ther-
modynamic properties. From thermodynamics, we know that the
specific internal energy, 1, satisfies dit = ¢, dT + (01t/0p)r dp
and that the specific enthalpy, h=u+ p/p, satisfies dh = cpdT +
(0h/dp)r dp. We shall neglect the dp contributions to both ener-
gies. We have already neglected the effect of p on p.

Temperature variations in the flow are not large enough to change
k significantly; we have already neglected temperature effects on p.

Potential and kinetic energy changes are negligible in comparison
to thermal energy changes. Since the kinetic energy of a fluid can
change owing to pressure gradients, this again means that pressure
variations may not be too large.

The viscous stresses do not dissipate enough energy to warm the
fluid significantly.
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Figure 6.12 Control volume in a
heat-flow and fluid-flow field.

Just as we wrote eqgn. (2.7) in Section 2.1, we now write conservation
of energy in the form

d . AL
—J piLdR = — J(ph)u-ndS
‘dt R ) S
rate of internal rate of internal energy and
energy increase flow work out of R
inR

—L(—kVT) -ndS + J qdRr (6.36)
R

~ v
net heat conduction rate of heat
rate out of R generation in R

In the third integral, 1 - 71 dS represents the volume flow rate through an
element dS of the control surface. The position of R is not changing in
time, so we can bring the time derivative inside the first integral. If we
then we call in Gauss’s theorem [egn. (2.8)] to make volume integrals of
the surface integrals, eqn. (6.36) becomes

J (pa”+pv-(ah)—v-kv7"—q)d1e:0
R ot

Because the integrand must vanish identically (recall the footnote on
pg. 55 in Chap. 2) and because k depends weakly on T,

p(aattuv-(aﬁ) )—kvzr—qzo
[ —
=i-Vh+hv- i

——
= 0, by continuity
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Since we are neglecting pressure effects and density changes, we can
approximate changes in the internal energy by changes in the enthalpy:

dazdﬁ—d(ﬁ) ~ dh

Upon substituting dh ~ cp dT, it follows that

oT _ .
pcp( I avr )= k2T + g (6.37)
— —_— —_— —_—
energy enthalpy heat heat
storage convection conduction generation

This is the energy equation for an incompressible flow field. It is the
same as the corresponding equation (2.11) for a solid body, except for
the enthalpy transport, or convection, term, pcyt - VT.

Consider the term in parentheses in eqn. (6.37):

vy 2T 2T, 0T T DT

oT
— + + + = — .
ot ot " Yox "Voy "Woz T Dt (6.38)
DT/Dt is exactly the so-called material derivative, which is treated in
some detail in every fluid mechanics course. DT /Dt is the rate of change
of the temperature of a fluid particle as it moves in a flow field.

In a steady two-dimensional flow field without heat sources, eqn. (6.37)

takes the form

2 2
oT . oT _ <aT 8T> (6.39)

ua + U@ =X ﬁ + W
Furthermore, in a b.l,, 92T /0x2 <« 92T /0y?2, so the b.l. energy equation
is

oT oT 0°T
U—-+V5- =

Heat and momentum transfer analogy

Consider a b.l. in a fluid of bulk temperature T, flowing over a flat sur-
face at temperature T,,. The momentum equation and its b.c.’s can be
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written as

u

U

y=0
ua(u)wa(u)_vaz(u) | T |
0X \ U 0y \ U/ 02\ Uw U | y=co

0 ([ u
\ ay(um)yw =0
(6.41)

And the energy equation (6.40) can be written in terms of a dimensionless
temperature, ® = (T - T},)/(Teo — Ty ), as

O(y=0)=0
2 _ _
ua—G + va—® = aa—® Oy =0)=1 (6.42)
ox 0y 0y? 00 0
0¥ |y B

Notice that the problems of predicting u /1 and © are identical, with
one exception: eqn. (6.41) has v in it whereas eqn. (6.42) has «. If v and
o should happen to be equal, the temperature distribution in the b.l. is

T-Ty

——— = f’(n) derivative of the Blasius function
To — Ty

forv =«:

since the two problems must have the same solution.
In this case, we can immediately calculate the heat transfer coefficient

using eqn. (6.5):
(%)
y=0 an a_’)/ n=0

but (8%f/0n%) -0 = 0.33206 (see Fig. 6.10) and 9n/3y = \/lw/VX, SO

k o(T — Tw)

h= T, oy

h% — Nuy = 0.33206 VRey for v = (6.43)
Normally, in using eqn. (6.43) or any other forced convection equation,

properties should be evaluated at the film temperature, Ty = (Ty+Tw) /2.
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Example 6.4

Water flows over a flat heater, 0.06 m in length, under high pressure
at 300°C. The free stream velocity is 2 m/s and the heater is held at
315°C. What is the average heat flux?

SOLUTION. At Ty = (315 + 300)/2 = 307°C:

v =0.124%x10"%m?/s
«=0.124 x 10°5m?/s

Therefore, v = o« and we can use eqn. (6.43). First we must calculate
the average heat flux, . To do this, we call T,, — T, = AT and write

kAT

kAT J Uoo d

L
q:H hAT dx = J “Nuy dx = 0.332°22
0

SO
G =2AT (0.33212«/ReL) = 2qx-1
Thus,
= B 0.520 | 2(0.06) B 5
h=2h,_1 =0.664 0.06 V0124 x 106 — 5661 W/m-K
and

G = hAT = 5661(315 — 300) = 84,915 W/m? = 84.9 kW/m?

Equation (6.43) is clearly a very restrictive heat transfer solution.
We now want to find how to evaluate g when v does not equal . l

6.4 The Prandtl number and the boundary layer

thicknesses

Dimensional analysis

We must now look more closely at the implications of the similarity be-
tween the velocity and thermal boundary layers. We first ask what dimen-
sional analysis reveals about heat transfer in the laminar b.l. We know
by now that the dimensional functional equation for the heat transfer
coefficient, h, should be

h = fn(kaxipacpa“auoo)
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We have excluded T,, — T on the basis of Newton’s original hypothesis,
borne out in eqn. (6.43), that h + fn(AT) during forced convection. This
gives seven variables in J/K, m, kg, and s, or 7 — 4 = 3 pi-groups. Note
that, as we indicated at the end of Section 4.3, there is no conversion
between heat and work so it we should not regard J as N-m, but rather
as a separate unit. The dimensionless groups are then:

k H
and a new group:
I3 = Hep =Y _ Pr, Prandt]l number
k x
Thus,
Nu, = fn(Rey, Pr) (6.44)

in forced convection flow situations. Equation (6.43) was developed for
the case in which v = « or Pr = 1; therefore, it is of the same form as
eqn. (6.44), although it does not display the Pr dependence of Nuy.

To better understand the physical meaning of the Prandtl number, let
us briefly consider how to predict its value in a gas.

Kinetic theory of y and k

Figure 6.13 shows a small neighborhood of a point of interest in a gas
in which there exists a velocity or temperature gradient. We identify the
mean free path of molecules between collisions as £ and indicate planes
at y + ¥ /2 which bracket the average travel of those molecules found at
plane y. (Actually, these planes should be located closer to y = ¥ for a
variety of subtle reasons. This and other fine points of these arguments
are explained in detail in [6.4].)

The shear stress, Ty, can be expressed as the change of momentum
of all molecules that pass through the y-plane of interest, per unit area:

_( mass flux of molecules _ change in fluid
Tyx = fromy —¥€/2toy +/2 velocity

The mass flux from top to bottom is proportional to pC, where C, the
mean molecular speed of the stationary fluid, is > u or v in incompress-
ible flow. Thus,

Tyx = C1 (pf) (#du

N . du
dy) ) and this also equals u@ (6.45)
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\ The approximate plane at which a molecule

22 crossing y will suffer its next collision
v+ —

Temperature or velocity gradient

The plane
of interest

y - - - -

The approximate plane at which a molecule

02 crossing y suffered its prior collision
y— -

Temperature, T, or velocity, u

Figure 6.13 Momentum and energy transfer in a gas with a
velocity or temperature gradient.

By the same token,

dy = C (pcvf> (#Zg) and this also equals — kg

where ¢, is the specific heat at constant volume. The constants, C; and
C», are on the order of unity. It follows immediately that

u==C (pfﬂ) SO v=C_ (fﬂ)

and
k=0Co (pcvfﬂ) SO X = ng

where y = ¢, /cy is approximately a constant on the order of unity for a
given gas. Thus, for a gas,

% .
Pr = e a constant on the order of unity

More detailed use of the kinetic theory of gases reveals more specific
information as to the value of the Prandtl number, and these points are
borne out reasonably well experimentally, as you can determine from
Appendix A:

¢ For simple monatomic gases, Pr = %
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e For diatomic gases in which vibration is unexcited (such as Nz and
5

O at room temperature), Pr = 2.
e As the complexity of gas molecules increases, Pr approaches an
upper value of unity.

e Pris most insensitive to temperature in gases made up of the sim-
plest molecules because their structure is least responsive to tem-
perature changes.

In a liquid, the physical mechanisms of molecular momentum and
energy transport are much more complicated and Pr can be far from
unity. For example (cf. Table A.3):

e For liquids composed of fairly simple molecules, excluding metals,
Pr is of the order of magnitude of 1 to 10.

e For liquid metals, Pr is of the order of magnitude of 1072 or less.

o If the molecular structure of a liquid is very complex, Pr might reach
values on the order of 10°. This is true of oils made of long-chain
hydrocarbons, for example.

Thus, while Pr can vary over almost eight orders of magnitude in
common fluids, it is still the result of analogous mechanisms of heat and
momentum transfer. The numerical values of Pr, as well as the analogy
itself, have their origins in the same basic process of molecular transport.

Boundary layer thicknesses, é and é;, and the Prandtl number

We have seen that the exact solution of the b.l. equations gives 6 = d;
for Pr = 1, and it gives dimensionless velocity and temperature profiles
that are identical on a flat surface. Two other things should be easy to
see:

e WhenPr > 1, 6 > 6+, and when Pr < 1, 6 < 8¢. This is true because

high viscosity leads to a thick velocity b.l., and a high thermal dif-
fusivity should give a thick thermal b.l.

e Since the exact governing equations (6.41) and (6.42) are identical
for either b.l., except for the appearance of « in one and v in the
other, we expect that

Ot _ (z )
6—fn (xonly
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Therefore, we can combine these two observations, defining 6;/6 = ¢,
and get

¢ = monotonically decreasing function of Pr only (6.46)

The exact solution of the thermal b.l. equations proves this to be precisely
true.

The fact that ¢ is independent of x will greatly simplify the use of
the integral method. We shall establish the correct form of egn. (6.46) in
the following section.

6.5 Heat transfer coefficient for laminar,
incompressible flow over a flat surface

The integral method for solving the energy equation

Integrating the b.l. energy equation in the same way as the momentum
equation gives

Ot oT Ot oT ot 22T
u—dy+ J v—dy =« —d
Jo S I 0y Y 0o 0y? Y
And the chain rule of differentiation in the form xdy = dxy — ydx,
reduces this to

5t ouT 5 du 5t ouT 5t B aT |
Jo 0x 4y - 0 T&‘”*J oy dy—J ngy—(x@ 0
or
ot JuT Ot ot ou ov
Jo x dy + vT0 _.[o T( aJr@ )dy
— [ —
=T v|y:5t70 =0, eqn. (6.11)
_a{aT ot }
oy P 9y |y

=0

We evaluate v at v = d¢, using the continuity equation in the form of
eqn. (6.23), in the preceeding expression:
% 9 1 oT
( K

0 aM(T—Too)dy=E - @

> = fn(x only)
0
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or

dw
PCp

d (%
Ix JO u(T -To)dy = (6.47)

Equation (6.47) expresses the conservation of thermal energy in inte-
grated form. It shows that the rate thermal energy is carried away by
the b.l. flow is matched by the rate heat is transferred in at the wall.

Predicting the temperature distribution in the laminar thermal
boundary layer

We can continue to paraphrase the development of the velocity profile in
the laminar b.l., from the preceding section. We previously guessed the
velocity profile in such a way as to make it match what we know to be
true. We also know certain things to be true of the temperature profile.
The temperatures at the wall and at the outer edge of the b.l. are known.
Furthermore, the temperature distribution should be smooth as it blends
into T for y > 6;. This condition is imposed by setting dT/dy equal
to zero at ¥ = 6;. A fourth condition is obtained by writing eqn. (6.40)
at the wall, where u = v = 0. This gives (32T /dy?)y—o = 0. These four
conditions take the following dimensionless form:

T-Tw _ )
ﬁ—l at y/6; =0
T-Tw _ B
ﬁ—O at y/oy =1
g 6.48
d[(T_Too)/(Tw_TOO)] =0 at_’)//5 =1 ( )
Ay /50) '
0%[(T — To) /(T — Teo)] _ _
3(/50)2 0 atyioe=0

Equations (6.48) provide enough information to approximate the tem-
perature profile with a cubic function.

LA IR Cl
Tw—Tw_a+b6t+c 5, +d 5, (6.49)

Substituting eqn. (6.49) into eqns. (6.48), we get
a=1 —1=b+c+d O0=b+2c+3d 0=2c
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which gives

(6.50)

Predicting the heat flux in the laminar boundary layer

Equation (6.47) contains an as-yet-unknown quantity—the thermal b.l.
thickness, 6;. To calculate §;, we substitute the temperature profile,
eqn. (6.50), and the velocity profile, eqn. (6.29), in the integral form of
the energy equation, (6.47), which we first express as

St () a(2)]

Uoo (T — Too)i [6

dx
T —-Ty
ot d(y/é¢) .

¥/6¢=0

There is no problem in completing this integration if 6; < 6. However,
if 6; > 6, there will be a problem because the equation u/u« = 1, instead
of eqn. (6.29), defines the velocity beyond v = §. Let us proceed for the
moment in the hope that the requirement that 6; € 6 will be satisfied.
Introducing ¢ = 6;/6 in eqn. (6.51) and calling y/d; = n, we get

d 1/3 133)(3 13) 3«
Ot Ix 6t,[o<2n¢_2n¢ Lognagm)dn =5, ©32

P55 b3

Sl

Since ¢ is a constant for any Pr [recall eqgn. (6.46)], we separate variables:

sy dsi 30t/ Uoo

26tdx_dx_<3¢_3¢3)
20 280
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21!]! T T T rlllH[ T T T T

O Exact
ﬁ calculation
1

Prandtl number, Pr

Figure 6.14 The exact and approximate Prandtl number influ-
ence on the ratio of b.l. thicknesses.

Integrating this result with respect to x and taking 6; = 0 at x = 0, we

get
sex [ 13 3 4 (6.53)
20 280 |

But 6 = 4.64x/+/Reyx in the integral formulation [eqn. (6.31)]. We divide
by this value of § to be consistent and obtain

% == 0.9638/\/Pr¢ (1-¢2/14)

Rearranging this gives

5t . 1 B 1
5 173 = 173
o 1.025Pr!/3 [1_(5%/1452)] 1.025Pr

(6.54)

The unapproximated result above is shown in Fig. 6.14, along with the
results of Pohlhausen’s precise calculation (see Schlichting [6.3, Chap. 14]).
It turns out that the exact ratio, 6/d;, is represented with great accuracy
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by

o

5 = pr-1/3 0.6 < Pr <50 (6.55)

So the integral method is accurate within 2.5% in the Prandtl number
range indicated.

Notice that Fig. 6